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Preface

The “URSI Commission B School for Young Scientists” is organized by URSI Commission B and is
arranged for the first time on the occasion of the “2013 URSI Commission B International Symposium
on Electromagnetic Theory” (EMTS 2013) in Hiroshima, Japan. This School is a one-day event held
during EMTS 2013, and is sponsored jointly by URSI Commission B and the EMTS 2013 Local
Organizing Committee. The School offers a short, intensive course, where a series of lectures will be
delivered by two leading scientists in the Commission B community. Young scientists are encouraged
to learn the fundamentals and future directions in the area of electromagnetic theory from these
lectures.






Program

1. Course Title

Fundamentals of Numerical and Asymptotic Methods

2. Course Program

Lecture 1

- Date and Time: 9:00-13:00, May 20, 2013

- Venue: International Conference Center Hiroshima (ICCH), Hiroshima, Japan

- Lecture Title: The Method of Moments (MoM) Applied to Problems in Electromagnetic Scattering,
Radiation, and Guided Waves

- Instructor: Professor Donald R. Wilton (Dept. of Electrical & Computer Engineering, University
of Houston, Houston, Texas, USA)

Lunch: 13:00-14:00

Lecture 2

- Date and Time: 14:00-18:00, May 20, 2013

- Venue: International Conference Center Hiroshima (ICCH), Hiroshima, Japan

- Lecture Title: A Summary of Asymptotic High Frequency (HF) Methods for Solving
Electromagnetic (EM) Wave Problems

- Instructor: Professor Prabhakar H. Pathak (ElectroScience Lab., The Ohio State University,
Columbus, Ohio, USA)






Lecture Abstracts

The Method of Moments (MoM) Applied to Problems in Electromagnetic
Scattering, Radiation, and Guided Waves

Donald R. Wilton, University of Houston, Dept. of ECE
Houston, Texas 77096, USA

E-mail: wilton@uh.edu

The Method of Moments (MoM) is the name given by Harrington to a general procedure for
converting linear operator equations (e.g., linear partial differential or integral equations) into
approximating systems of linear equations. MoM and the Finite Element Method (FEM) are
essentially equivalent, though they have come to have slightly different connotations due to their
different origins. Thus, the former is usually associated with integral equations, and the latter with
partial differential equations. However, we minimize any distinctions between them, employing
similar approaches to discretize both integral and partial differential equations, and to hybrid
formulations in which the two are coupled.

Radiation and scattering problems are generally open region problems involving piecewise
homogeneous regions. Such problems are often efficiently formulated by introducing surface currents
on region boundaries via the equivalence principle. These equivalent currents are then solved for using
integral equation approaches, where the Green’s functions used ensure that the radiated or scattered
fields are outgoing at infinity. Integral equations arise from the imposition of boundary conditions on
fields represented in terms of induced or equivalent currents on the boundaries. The equations are
converted to matrix form by discretizing both the surface geometry and the equivalent currents. On
conducting surfaces, the most common formulations are the electric and the magnetic field integral
equations (EFIE and MFIE, respectively). Since one or both of the associated integral operators
appear in almost every integral equation, their careful study is warranted. The EFIE is the more
restrictive, requiring so-called divergence-conforming current representations (bases) with continuous
normal components across element boundaries. However, both operators appear, for example, in the
PMCHWT and Miller formulations for scattering by dielectric objects.

For interior problems or those involving extremely inhomogeneous regions, it is often more
efficient to seek direct numerical solution of the vector Helmholtz wave equation. In three-dimensions,
the solution domain is generally subdivided into a mesh of cubic or tetrahedral cells, with tangential
vector components defined at the cell edges. The fields are then expanded in terms of interpolatory
bases whose coefficients represent these tangential components; the same bases are also typically used
to test the Helmholtz equation, enforcing its equality in some average sense. For the Helmholtz
equation, the bases should be curl-conforming, i.e. producing field representations with continuous
tangential components, even across material boundaries.

Both integral and Helmholtz equations suffer from low-frequency breakdown problems. In
addition, integral equations must deal with the evaluation of singular integrals, interior resonances, and
the solution of dense systems of equations. On the other hand, the solution of Helmholtz equations
involves issues with preconditioning, and, for open region problems, mesh truncation.  Recent
advances in dealing with these issues will be discussed briefly.
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A Summary of Asymptotic High Frequency (HF) Methods for Solving
Electromagnetic (EM) Wave Problems

Prabhakar H. Pathak, The Ohio State University ElectroScience Lab., Dept. of ECE
1320 Kinnear Rd., Columbus, Ohio 43212, USA
E-mail: pathak.2@osu.edu

The geometrical optics (GO) ray field consists of direct, reflected and refracted rays. GO ray paths
obey Fermat’s principle, and describe reflection and refraction of HF EM waves, but not the
diffraction of waves around edges and smooth objects, etc. Consequently, GO predicts a zero EM field
within shadow regions of impenetrable obstacles illuminated by an incident GO ray field. Early
attempts by Young to predict edge diffraction via rays, and by Huygen, Fresnel and Kirchhoff to
predict diffraction using wave theory will be briefly reviewed. Unlike GO, the wave based physical
optics (PO) approach developed later requires an integration of the induced currents on the surface of
an impenetrable obstacle illuminated by an external EM source in order to find the scattered field. The
induced currents in PO are approximated by those which would exist on a locally flat tangent surface,
and are set to zero in the GO shadow region. If the incident field behaves locally as a plane wave at
every point on the obstacle, then it can be represented as a GO ray field; the resulting PO calculation
constitutes a HF wave optical approach. PO contains diffraction effects due to the truncation of the
currents at the GO shadow boundary; these effects may be spurious if there is no physical edge at the
GO shadow boundary on the obstacle, whereas it is incomplete even if an edge is present at the GO
shadow boundary. In the 1950s, Ufimtsev introduced an asymptotic correction to PO; his formulation
is called the physical theory of diffraction (PTD). PTD = PO + A, where A is available primarily for
edged bodies. In its original form, PTD is not accurate near and in shadow zones of smooth objects
without edges, nor in shadow zones for bodies containing edges that are not completely illuminated or
visible. At about the same time as PTD, a ray theory of diffraction was introduced by Keller; it is
referred to as the geometrical theory of diffraction (GTD). GTD was systematically formulated by
generalizing Fermat’s principle to include a new class of diffracted rays. Such diffracted rays arise at
geometrical and/or electrical discontinuities on the obstacle, and they exist in addition to GO rays.
GTD = GO + Diffraction. Away from points of diffraction, the diffracted rays propagate like GO rays.
Just as the initial values of reflected and refracted rays are characterized by reflection and transmission
coefficients, the diffracted rays are characterized by diffraction coefficients. These GTD coefficients
may be found from the asymptotic HF solutions to appropriate simpler canonical problems via the
local properties of ray fields. Most importantly, the GTD overcomes the failure of GO in the shadow
region, it does not require integration over currents, and it provides a vivid physical picture for the
mechanisms of radiation and scattering. In its original form, GTD exhibits singularities at GO ray
shadow boundaries and ray caustics. Uniform asymptotic methods were developed to patch up GTD in
such regions. These uniform theories are referred to as UTD, UAT, spectral synthesis methods, and the
equivalent current method (ECM). The pros and cons of wave optical methods (PO, PTD, ECM) and
ray optical methods (GO, GTD, UTD, UAT) will be discussed along with some recent advances in PO
and UTD. AUTD for edges excited by complex source beams (CSBs) and Gaussian beams (GBs) will
also be briefly described; the latter may be viewed as constituting beam optical methods. A
hybridization of HF and numerical methods will be briefly discussed as well.
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Biographical Sketches of Course Instructors

Donald R. Wilton received the B.S., M.S., and Ph.D. degrees from the University of lllinois,
Urbana-Champaign, in 1964, 1966, and 1970, respectively. From 1965 to 1968 he was with Hughes
Aircraft Co., Fullerton, CA, engaged in the analysis and design of phased array antennas. From
1970-1983 he was with the Department of Electrical Engineering, University of Mississippi where he
attained the rank of Professor. Since 1983 he has been Professor of Electrical Engineering at the
University of Houston. From 1978-1979 he was a Visiting Professor at Syracuse University. During
2004-2005 he was a visiting professor at the Polytechnic of Turin, Italy, the Sandia National
Laboratories, and the University of Washington. His primary research interest is in computational
electromagnetics, and he has published, lectured, and consulted extensively in this area. He is listed at
ISIHighlyCited.com as one of the most cited authors in the computer science area.

Dr. Wilton is a Life Fellow of the IEEE and received the IEEE Third Millennium Medal. He has
served the IEEE Antennas and Propagation Society as an Associate Editor of the Transactions on
Antennas and Propagation, as a Distinguished National Lecturer, and as a member of its
Administrative Committee. He is also a member of Commission B of the International Radio Science
Union (URSI), in which he has held various offices, including Chair of U. S. Commission B. Dr.
Wilton is a member of the Applied Computational Electromagnetics Society (ACES) and recently
received the Computational Electromagnetics Award.



Prabhakar Pathak received his Ph.D (1973) from the Ohio State Univ (OSU). Currently he is
Professor (Emeritus) at OSU. He is regarded as a co-developer of the uniform geometrical theory of
diffraction (UTD). Currently his interests are in the development of new UTD solutions, as well as fast
Beam and Hybrid methods, for solving large antenna/scattering problems of engineering interest. He
was an IEEE (AP-S) Distinguished Lecturer from 1991-1993. He received the 1996 Schelkunoff best
paper award from IEEE-AP-S; the ISAP 2009 best paper award; the George Sinclair award (1996)
from OSU ElectroScience Laboratory; and, IEEE Third Millennium Medal from AP-S in 2000. He is
an IEEE Life Fellow, and a member of URSI-commission B.
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University of Houston
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Note 1 Linear Operator Equations

Method of Moments and Finite Element
Methods

Donald R. Wilton
Dept. of Electrical and Computer Engineeering
University of Houston
Houston, TX 77096 USA
wilton@uh.edu

Method of Moments and the
Finite Element Method

Partial Differential .

Equations (PDE)

Finite
Element
Method
(FEM)

Method of
Moments
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Note 1 Linear Operator Equations

Linear Operator Equations

¢ Alinear operator equation is represented symbolically as
Lu=f (1)
where L is a linear operator,
u=u(r) =unknown field or current, r e D
f = f(r) =known source,incident field or other
forcing function, re D
e Operator Lislinear if it satisfies

L(au, +bu,) = aLu, +bLu,
e L is generally a differential,integral, or integro - differential

operator on D relating sources f to fieldsu inD or on
its boundary, 0D. Matrices are also linear operators.

Linear Operators in Computational EM

kY

LV _W+k§V + BC's, xe(0,L)
Lgs = L),dS', resS
S47rg|r—r

Ly = jaij(r,r')J(r')dS'—%jG(r,r')V'-J(r')dS' + BC, res
S S

J(r) .
L£J = (T)_nxPVjVG(r,r’)xJ(r’)dS’, reS Astatics: \
S
G(r,r) = L, R=|r-r/, (3D)
LD = VD+kiled + BC's, reV 47R
1 2 =—n—D, D =|p-p/,(2D)
LE = Vxu VxE-k;eE + BC's, reV 27
In dynamics: ( e assumed)
L[x,] = [Lmn][Xm] o iR
G(r,r') = ; 3D
(r,r) R (3D)
Operators are also defined by the H (kD)

characteristics of the functions to which K == 7 (2D)
they may be applied.

12




Note 1 Linear Operator Equations

Inner Products

e Numerical solution methods are projection or moment methods
involving inner products.

e Inner (dot or scalar) product between pairs of N -component vectors,

U=, Uy,...,Uy), V=(V,V,,...,Vy):

<U,Vv>=U-V = y uv, =[ul[v,] (3)

(A )

s with ordinary vectors, we
may think of the inner product
as a projection of “u

on Vv’ or“vonu.” Ifthe dot
product is zero, the vectors
\are said to be “orthogonal.” Y,

Inner Products, cont’d

¢ Inner product between two scalar functionsuand v:

<u,v>=juvdD 4)
D

domain D=C,S,V

(Note : Often v appears conjugated in inner product definitions!)

C - lineorcurve (1-D) C S
S - surface (2-D) /-\
VY - volume (3-D)

e (Bi-)linearity of inner product:
<au, +bu,,v>=a<u,v>+b<u,,Vv>,
<u,cv, +dv, >=c<u,v,>+d <u,v, > (5)

13




Note 1 Linear Operator Equations

Inner Products: Examples

e U andyv vector functions,u=uandv=v:

<u;v>:Iu(r)-v(r)dD, D=C,S,or V. (6)

e Scalarsu andv "convolved" with scalar Green's function
G(r,r') ("kernel" of integral equation):

<u,G,v> = <u,<G,v>> =”u(r)G(r, rv(r)dD'dD (7)

e Vectors u=uandv = v convolved with scalar Green's function
G(r,r'):

<u;G,v> =”u(r)-v(r’) G(r,r") dDdD (8)

e Vectorsu=uand v =v convolved with dyadic Green's function G(r,r"):

<uGv> =”u(r)-g(r, r-v(r) dDdD (9)

Vo

e Ingeneral, <u,v> = <v,Uu> Lln EM, an unconjugated inner product is

often used because the vector quantities
often satisfy the reciprocity theorem.

Weak and Strong Forms of Operator

Equations
e Strong form (equality holds at every point in D): ¢ %
e Weak form (equality holds in a weighted average sense): ] /\W

<w,Lu>=<w, f > (11) Cus

where {w} is a set of weighting functions.
<wW,Lu>=<w,f >

Notes:
— If continuous, solutions u of (10)and (11) are identical
— For differential operators, integration by parts is often used
to transfer differentiability requirements from u to w.
— If u isinfinite dimensional, then so is the set of functions w

e Innumerical solutions, w's are often chosen from a finite set of weighting
or testing functions {wM}, m=1,2,...,N.

14




Note 1 Linear Operator Equations

Bases and Unknown Representations

e Approximate u as

uxu=3 0, = U] [u] (12)

where coefficients U are unknownandu,, n=1,...,N
are known basis functions.

e u_ mustbe"independent" and capable of approximating u.
¢ Independence of basesis measured by their "projections"

onto one another,

<u,,u, > = Gram Matrix (13)

Independence of Basis Functions

o I|dealare orthonormal bases u,, for which

1, m=n,
0,m=n,
(5, Is the "Kronecker delta") but are difficult to discover for arbitrary D

<um,un>=.|'umundD :5mn={ (14)
D

e Instead, firstapproximate D by subdividing into subdomains or elements
(e.g.,line segments, triangles, rectangles, tetrahedrons) D°,e=1,2,...,E.

~ E e

ThenD ~D=|J D"

e Theninterpolatory polynomial bases are usually used.
They satisfy the property u,(r;) =4, wherer,

j=L12,...,N are interpolation points on D. Inaddition,
they also satisfy the following "approximation" to (14):

Zum(r,-)un(r,-) = O (15) f(x)=~ j f(x,)u, (X)
j=1 n=0

15




Note 1 Linear Operator Equations

Method of Moments

e Substituting representation for u into operator
equation and testing with{w=w_,m=1 2,...,N}yields

N
><w,, Lu, >U, =<w,, f> m=12_.,N (16)
=1

or in matrix form, [L,..]is @amatrix

[L..JU,.1=[F,] approximate (17)
to operator L!

where L, =<w_,Lu,>and F, =<w_, f >.

e Solving the linear system yields unknowns [U, ]
that provide an approximation to u in D. The result
can also be written as
u~u=[UTI[ul=[lMN.] (18)

where [u_]' denotes transpose of [u, ]

Abstract Vector Space Interpretation of
the Method of Moments

e Theunknownis approximatedin the "subspace of basisvectors u,"
as u~l=>Uu,
n

e Both Li= Zunﬁun and f are projected onto the "subspace of

n . . .
testing vectors w,, "; equating the projections determines {Un } :

e The projection both "minimizes" the residual error f —Zunﬁun and

makes it orthogonal to the testing vector subspace.

16




Note 1 Linear Operator Equations

Linear Functionals

e Alinear functional I [u] is a scalar physical parameter
or figure of merit that dependslinearly onu (e.g., I [au] = al [u]).
Examples :
— Capacitance where u is surface charge
— Input admittance where u is a surface current
— Vector component of far field where u is a surface current
— Value of u(r) at point r (may be unbounded at edge or corner!)

e Rieszrepresentationtheorem: For anybounded linear functional,
afunction g existssuchthat I [u] canbe represented as aninner product,
I[u]=—<u,g> (19)
e Foru=u,
N
Iul~I[0]=-<0,g>=->U, <u,, g>=-[U, 1 [<u,,g>] (20)

n=1

¢ Note : Sampled values of the unknown involve unbounded functionals :
J(r') = I J(r) o(r-r)dS = g(r) = -o(r-r’) isunbounded

S

Summary of Method of Moments

e Subdivide D into E subdomains or elements D°; approximate the solution

domainas D~ D= U;De.

e Choose (usually interpolating) basis functions {u,} and approximate u as

u~d=3Uu, =1yl

e Choose weighting (testing) functions{w_} (Galerkin's method : {w,_}={u_.})

o Substitute U into operator equation and test with w_. (For differential or
integro - differential operators, integrate by parts to reduce differentiability
requirements onu, and incorporate boundary conditions.)

17




Note 1 Linear Operator Equations

Summary of Method of Moments, Cont’d

e Solve the resulting linear matrix system
[L ]V, 1=[F,]
where
L., =<w,, Lu, >,
F.=<w,f>

for unknown coefficients U . A direct or iterative solution procedure may
be used.

e Compute desired figure - of -merit (linear functional) 1[u] as

Iu] = I[0] = -<0,g> = —ZN:Un<un,g> = —-[U.1'[<u,,g>]. (21)

n=1

The Variational Approach

¢ Variational and MoM approaches appear to be quite different, but
really are equivalent, as we'll show.

e Asalfirst step, we define an adjoint operator £' such that
<w,Lu>=<L"w,u> (22)
for arbitrary u and w.

e Adjoints exist and are unique; to find:
— Differential operators: Successively integrate by parts
— Integral operators : Interchange source and observation points
in the kernel
— Matrix operator : Simply transpose the original matrix

18




Note 1 Linear Operator Equations

The Adjoint Problem

e The variational approach to solving Lu = f begins by considering the
linear functional
Iful=-<u,g>

¢ Next define the adjoint problem,
L w=qg. (23)
where g plays role of source or forcing function, wis solution of adjoint problem.

e Physical significance of wmay not always be clear, but note it does provide
an alternative means to compute the functional :
I[ul]= —<u,g>= —<u,L'w>
= —<Luw>=—<f,w> (24)
In electromagnetics, this dual representation is usually a consequence
of reciprocity, which also oftenimplies that £ = £ (£ is self - adjoint)

Adjoint Operator Examples

d?v

e LV = —+kiV + BC's
X

° qs(r) !
qs B '[472'€|I’ r|

o [

jouG(r,rIrdS ———[G@r,rv"-I(r)dS + BC's
joe
S S

J A A .
e [ = y—nx(nxVvaJ‘G(r,r’)n’xJ(r’)dS') + BC' (see Appendix)
S

o L& = VD+kle,®@ + BC's
e L'E = Vxu'VxE-kig,E + BC's

o L[] = [Lun] [X,]

Most of the above operators are "self - adjoint!"

19




Note 1 Linear Operator Equations

Bi-Variational Functional

e Define the bivariational functional "
I[4, W]=<L0,W>-<0,g>—-<Tf,W> (25)
Note that I[u, w]= <Lthw> —<u,g>- <fw> = I[u].
Weregard G and W as approximate or trial solutions to the
original and adjoint problems, respectively.
¢ Define solution errors in the original and adjoint problems as

ou=0-U, ow=W-Ww. (26)
Then we can easily show that
I[d, W]=—-<u,g>+<Ldu,ow> (27)

or olfu,w]= < Ldu, ow > with second order error in du and ow.
(Functional is said to be stationary or to have only a second
order variation about the functions u and w.)

™ Other, less general functionals often restrict the form of the resulting linear system,

e.g., to Galerkin's method!

Rayleigh-Ritz Procedure

e Approximate u and win terms of basis sets {u, }and{w_}as
0=>U,u, (28)
W=>Ww,. (29)
e Substitute above expansionsinto the bi- variational functional,

1[0, W)=Y > WU, <Lu,w,>->U <u,g>->W, <fw, > (30)

andset ol[u, w]/oW, = dl[t,w]/oU, =0 (stationarity condition).

e Replace dummy index p by min first set, p by ninthe second.
The surprisingresultis that...

20




Note 1 Linear Operator Equations

. . . One ODbtains Independent Moment Equations
for Both the Original and the Adjoint Problems!

¢ (Moment equations for original problem, which are independent of g)

m

> <w,, Lu, >U, =<w,, f> m=12....N=(L,]U,]=[F.]) (31

e (Moment equations for original problem, which are independent of f)

Y <Lu, w,>W, =<u,g> n=L2...,N. (32)

(recall <Lu,,w,> = <u,L'w,>)=(L.]' W,]=[G.)  (33)

¢ Note also the independence of equation sets (31) and (32), and the
reversed roles of basis and testing functions in the adjoint problem.

Idea: Why not insert the resulting 0, W into the variational form possibly
yielding more accurate results than substituting into the non - variational
form of the functional?

Evaluation of Functional

Write bivariational functional as
(0,W)=<L0,W>-<f, W> —<0,g>
=<L0d-f,W> —<0,0>. (34)

The first term on the right hand side vanishes:

<L0-f,W> :;Wm {Z <Lu,w >U -<fw >}: W, ] ([Lw]U.]-1F.])

=0. (by(31)) (35)
Hence
(0, W)= —<0,g> =-> U, <u,g> (36)
l.e.,
1(0)=1(a, w), (37)

SO we obtain the same result using either the (bi-)variational or
non - variational forms of the functional!

21




Note 1 Linear Operator Equations

Equivalence of MoM and
Variational Approach

e (i canbe determined from the MoM equations independent of wand g.
The solutionis same as that obtained by the (bi-)variational approach.

e I[U]=I[U,W] independent of g.

e The variational approach (and adjoint problem) is useful in proving
stationarity, but seems otherwise largely superfluousin arrivingat a
numerical formulation. The moment method yields the same solution
butis generally simpler to apply. The variational problem tells us...

—Moment method solutions are automatically stationary.

—ErrorinI[d,w] (olfu,w]= < Ldu, dw>) is proportional
to thatinboth u, w; so to reduce error, choose w,, to
well.approximate w, the solution of the adjoint problem.

End of Note 1
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Note 1 Linear Operator Equations

Appendix: Derivation of MFIE
Adjoint Operator

o L] = —J(Zr)—ﬁxPVjVG(r,r')xJ(r')dS':(ﬁxHi“)
S
We first write the MFIE in the non - standard form

—Ax LI =—Nx ()+nx(n><V><PVjG(rr)J(r)dS)— nx(an'”C)

ﬁx(ﬁxHS ):-H?an:—ilimVxA
wurls
Then for a tangential surface testing vector M(r), we have that
<M,-n x?+ﬁ x (A xVxPVJ‘G(I’, rJ(rHhds’) >
S
which is of the form <M, — IiTr? H[J] > and which can be interpreted as a reaction intgral.

Hence, by the reaction theorem, we have

<M,=limH[J]> = <J,limE[M] > = <J,Ax 'V'z(r) +ﬁx(ﬁxVxPVIG(r,r’)M(r’)dS’) >

—ﬁx[ﬁxES ) EtSan *—7|imV><F
ETVS

Appendix: Derivation of MFIE
Adjoint Operator, cont’d

<M, —fix J(zr) +Ax(AxV xPV[G(r,)I(r)dS) > = <J,Ax |v|2(r) +Ax(AxV xPV[G(r,F)M(r)dS") >
S S

and even though M -(—ﬁ x%) =J -(ﬁ X@j the operator —ix £ is non-self - adjoint.

For the original operator, set M=—nxw and the above becomes

() (nxVxPVIG(r rd(rHds’)>=<J,—= () nx(ﬁxVxPVfG(r,r’)ﬁ'xw(r)dS’)>

and the adjoint operator is

L'w = W( ) nx(nxVxPVIG(r rA xw(r)dS’)

23




Note 2 EFIE in 3-D: Rectangular and Triangular Surface Patch Modeling

EFIE in 3-D:
Rectangular and Triangular Surface
Patch Modeling

Donald R. Wilton
Michael A. Khayat

Features of the 3D Electric Field
Integral Equation (EFIE)

K The total electric field vanishes on perfect \
electric conductors (PEC):
£, =El

tan

« Scattered field is produced by the induced surface
current, J.

k The scattered field is represented in terms of potentiay
a E°'=-—jwA-VO, )

A= ,uj G(r,r)J(r)ds, @ %j G(r,r)q(r)ds’

o IR

AR

, R=|r-r'

S V(') =-joq(r) G(r,r) =
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Note 2 EFIE in 3-D: Rectangular and Triangular Surface Patch Modeling

Representing Electric Current
on a Conductor

e For simplicity,assume aPEC flat plate at z =0, :
J(r)=J x+J,y

e Subdivide plate into rectangular
elements or cells.

e For the scalar potential, we also need the surface charge density :

: aJ, o)
— N=V.-J(r="2X4+—Y
j@a(r)=V-3(N=—x+—

= J(r) must be differentiable along the current direction!

= « J ispiecewiselinearin x, constantiny;

- J, ispiecewiselineariny ,constantin x;
« q(r) is piecewise constant

On Rectangular Elements, Rooftop Bases
Provide Good Compromise Between Simplicity
and Effectiveness

x-directed basis/

testing function « Normal current compon
are continuous, even at
bends (div-conforming)

» Tangential current
components are
discontinuous

y = y-directed basis/
~—~_ X testing function |* Piecewise constant charge

representation

» Charge, current qualitatively satisfy
edge and corner conditions Q}Iges

\

ents

» Current vanishes at plate

/
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Note 2 EFIE in 3-D: Rectangular and Triangular Surface Patch Modeling

Rooftop Bases Model Surface Charge
Density as Piecewise Constant

x-directed
basis function

y-directed basis

i V-A,
A1) function

@or y -directed bases, for instance: \

_ Interpolation properties
y 2 ynt‘ reS: : .
A,(N)=YA,(y) = Ay n ofAy -directed bases:
0, otherwise y'An(r)|>;>;m = Omn
VA, =9-vA, =250 _ i_xl/’ reS 5l =
n n dy . \ /
\ 0, otherW|sy

But Modern Problems Require the Flexibility of

Triangular Surface Patch Modeling
Cyclone Class Patrol Craft, PC-1
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Note 2 EFIE in 3-D: Rectangular and Triangular Surface Patch Modeling

Definitions of Geometrical and Electrical
Quantities for Current on a Surface

(Magnetic) Vector Potential:
Ar) = uf G(r,r)(r)ds,

S g IR
R G(r,r) = (Green's function)
N A
(r), surface B ,
urrent density R=|r-r

/

(Electric ) Scalar Potential : \

o(r) = % [, ar)ds,

q(r) :+V-J(r) (continutity eq.)
— @

O \_

Surface Discretization

| |E e
S8 =U%S
J » A Global Node list defines vertex
locations
Node # X y z
\ o X | Y | Zas
* An element list contains both
global node and DoF numbers
Element e Global nb\‘dg number/
DoF nunther
local nodel local node\Z\ ) \Igcal node 3
DoF’s are current density components ; 356/ 126/
normal to triangle edges! 17 “13 a7
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Note 2 EFIE in 3-D: Rectangular and Triangular Surface Patch Modeling

Area Coordinates Are Used to Represent
Bases and Parameterize Element Geometry

A .
=— 1=123
A

= Gt6tg=1

¥\ 1
r=810+&0, &1 ¥/> L. <
0 > 51

e

rr = r, forsomee,iandn [AII elements mapped to }

local | | global “parent element”

An Area Coordinate Is Also the Fractional
Distance from an Edge to the Opposite Vertex
1

_ 2ty xheightof A height of A
%glhl hl

&

It is convenient to define edge vectors
associated with each edge and height
vectors associated with each vertex.

[ & linearly interpolates node i ]
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Note 2 EFIE in 3-D: Rectangular and Triangular Surface Patch Modeling

Local Geometry Parameter Definitions

Edge vectors fi =l — Tl fi :|£i|’
0,=0/0; =123

£ %L )
Area Ae:|'—1—'+1; i=12 or 3
2A° A
Height vectors h, :T’ =4, xn,
hi:hiﬁi; 1=12,3
Coordinate F‘a _
gradients V§i=—h—; i=123

Integration over Triangles Using
Area Coordinates

[RGLE

8 e 1% e e e

= 28| [ f(&p] + 505 + EpSAEDS
K

<288 W £ (E9p2 + 95 +E9p2)
k=1

3 P3
Numerical integration

Or evaluate analytically using

[[[eree dgdg,

 alply!

(a+B+y+2)!

Table 9 Sample points and weighting coefficients for K-point

quadrature on triangles.

K=3, error O(£3):
(0.6666666666666T

K=7, error O(£%):

(0.16666666666667,
{0.1666666666666T,

{0.33333333333333,
(0.79742698535309,
{0.10128650732348,
(0.10128650732346,
(0.47014206410512,
{0.47014206410512,
(0.05971587178977,

. 0.16666666666667)
0.66666666666667 )
0.16666666666667)

0.33333333333333)
0.10128650732340)
0.79742698535309)
0.10128650732346)
0.47014206410512)
0.05971587178977)
0.47014206410512)

Sample Points, E{IM ,E;"’) Weights, w),
k & k
(6" =1-¢&" - &)
K=1, error @ (£2):
(0.33333333333333, 0.33333333333333) | 0.50000000000000

0.16666606666667
0.16666666666667

0.166660606666667

0.11250000000000
(0.06296959027241
0.06296959027241
0.062969509027241
0.06619707639425
0.06619707639425

0.06619707639425
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Note 2 EFIE in 3-D: Rectangular and Triangular Surface Patch Modeling

Triangular Surface Patches

e EFIE has the form
-E; (J) = E'

tan

e Expand the currentindiv -conforming
bases A, (r),

I =3 1,A,(F)

 Alsouse{A,(r)} as testing functions,
\mzl,z,...N.

tan

F=GI +&0 +40

3D EFIE Formulation
reS

+V,. O=FE

tan tan tan

= joA

tan

[Ja)yj r,r') J(r)dS’—%V G(r,r’)V’-J(r’)dS’} =2,
we tan

ﬂest with A, (r) (as yet undefined!), to obtain theweak form \

[ jo<A ;A>+<A ;VO> =<A_;E > ]
where

A = y.[ rr')J(r)ds, @ = %LG(r,r’)V'-J(r')dS’,

G(r,r) = ij, <A;B> = LA(r)-B(r)dS

4R

or

K [ja),u<Am;G,J>+ _l <A_;VGV-J> =<A_;E >] /
—jws
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Note 2 EFIE in 3-D: Rectangular and Triangular Surface Patch Modeling

Integration by Parts

/ jo<AA>+<A;VO> =<AE > \

Using V(A @)= OV-A +A, VO =

divergence
theorem

[V-(A,@)dS = [@A,-GdC = [@V-AdS+[A, VOIS
S oS S S

<V-Ap, 0> ) <Am?de)>
= <A,;V®> = —<V-A, ,O> +_[d) A,-0 dS

m

%/_/
a5 _0onaS & cancelson

oS¢ if AyQ is continuous
Hence the weak form becomes [=> {A, | mustbe div -ConfOfmiHG]

{ jo<A ;A>-<V-A_ ,®>=<A_E > ]

or

\ {ja),u<Am;G,J >+_L<V.Am;G,V-J> =<A_;E >]/
Joe

EFIE MoM Formulation

@tting J(r") =ZInAn(r’), and substituting yields \

(Za 1] = [V ]

where TZmn]: jo [Lmn]+_i[8mnﬂ and

. Jo

L =41f_[ G(rF)ALM)A,(F)dSAS = u<AG.A, >}

1 ! ! ! / 1 |
[Smn =;L LVAm(r) G(r,r)V'-A,(r')dSdS = ~<V:A,GVA, >]

. o IR
\[Vm = <A,;E >,}[G(r,r') =7 R’} R = |r-r

70

o divergence of A, must exist
e A, mustbe div-conforming

7
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Note 2 EFIE in 3-D: Rectangular and Triangular Surface Patch Modeling

Basis Functions for Surface Currents on
Triangular Elements (Global Representation)

Global basis definition:
P, :
—, ref,
A,(r) = <hy
W\ 0, reT’
O
A, islinear in the radial direction,
p:]—r (&) =i(r(§) _r:) r eTnJ—r {constant in the angular direction J

§=(4 % %)

* Rao, S.M., D.R. Wilton, and A.W. Glisson, "Electromagnetic Scattering by Surfaces of
Arbitrary Shape," IEEE Trans. Antennas and Propagation, AP-30, No. 3, pp. 409-418,
May 1982.

Interpolation and Divergence Properties

Interpolation property:
ﬁ+. 1
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Note 2 EFIE in 3-D: Rectangular and Triangular Surface Patch Modeling

Local Representation of Basis Functions for
for Triangular Elements

Note :

A, =xA , resS=T; : :
PR R Local basis function:
global ocal

-1 e pi  r-rf
A- = —=
I(r) hi hi
B - R = AP
i i h
' A—Ea—E ) +E N +E 0 - 1)
1+1 :( Sia ~Gia) 511511/
= S (rieﬂ _ rie)_ Sin (rie - rie—l)
h;
[: Aei (r): §i+1'€i—1_§i—1€i+l’ r ESe, i:1,2,3]

e

hi
r==¢&re I r’
- é:l i + i+1 i+1+ i-1"i-1

Local Basis Functions
on Triangular Elements

Global Current
Reference Directions

Local basis functions:

AF} (r) _ §i+1£i—1l;§i—1’€i+l r cSt

2
V'Aei(l’)=h—, I‘ESe
\Local Current
Reference Directions
1, Global reference direction
for ith DoF is out of element e

-1, Global reference direction
for ith DoF is into element e
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Note 2 EFIE in 3-D: Rectangular and Triangular Surface Patch Modeling

Element Matrix for 3D EFIE

Element matrix :
(25 )= jo[ L] J+—[s¢

Jo

],

ef e f

Lij = ,:L|-1<Ai,G,Aj >,

Si = =<V-A5,G,V Al >,
&
i,j=123

Ve = <A E'>, 1=12,3

Element excitation vector :

3

7~ Matrix assembly \
O'ieO'jfZi‘J?f —>[Zmn:|

Excitation vector
assembly :

oV*' — [Vm }

Y

Matrix Assembl

o Matrix Assembly Rule:
Element UieGj Zi? of the element matrix is added to row m and column n of the

system matrix if mis the global DoF correspond
element e and n is the global DoF corresponding to the j th local DOF of element f.

ing to the i th local DOF of

\ /3

\ v Element

1 2 3
1
6/\)'1000

4

w7 | S_ource
Test 4 l triangle
triangle 2 é’

mautrix

Matrix assembly :
O'ieO'jfZi?f —>[Zmn]

Excitation vector
assembly :

O-ievie - |:Vm ]

4 v3 11 o| 735 735 735
2 21 22 £a3
o |3\

R

{ 1, local and global DOFs similarly directed

-1, otherwise

|

1 2 3
(NHZ5 o

8125y 23, Z:
add (+)(-)Z;; to Z,,, etc.

System
matrix, [Z.,,]

(NHZ3 e

e e o o o o

4 5 6 7
(D23 e Oz -

(NE)ZZ e HEZE -
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Note 2 EFIE in 3-D: Rectangular and Triangular Surface Patch Modeling

The Global Basis Form Can Be Extended toLine
Segment, Rectangular and Tetrahedral
Elements

0, elsewhere 0, elsewhere

1, pﬁ variesin 1D

dim p; =42, p, variesin 2D

3 p;—r variesin 3D

Numerical Integration to Form
Element Matrices

ﬁpical element matrix has the form \

<A;G,A| >
e For e = f use theresult
[f(nds

Ae

e (L[l e e e

= 28| [ TR+ g +Er5)dede,
K

~ T W (E + &9 +E9r), T°=2A°
k=1

Numerical integration

e For e= f use a singularity subtraction or cancellation
scheme to handle thel/R singularity




Note 2 EFIE in 3-D: Rectangular and Triangular Surface Patch Modeling

Singularity Subtraction vs. Singularity Cancellation

Singularity subtraction:

N,M
eij Z (rr)Rm
- jkR N,M N (! m
[ f(r)S—ds - j 20 ds' + [PIOR g5
S 4R S 47zR n20.m=0 S 4rR

Integrate analytically

Integrate numerically

ﬁngularity subtraction has been used very successfully, but has drawbacks

» Accuracy of numerical integral limited by non-analytic form of
difference integrand (i.e., R=\x2+y2+z2 is not "smooth" or
"polynomial-like" at (x, y,z):(0,0,0)).

* Methodis sometimes unsuitable for nearly-singular integrands

» Occasionally a singular expression cannot be analytically integrated

» Analytical integrals are complicated, difficult, and must be performed for
every separate combination of basis, element, and Green's function.
Hence the approach is poorly -suited to object oriented programming! /

Singularity Subtraction Methods Appear in
the Following References

KS. Jarvenpdad, M. Taskinen, and P. Yla-Oijala, “Singularity Subtractih

Technique for High-Order Polynomial Vector Basis Functions on Planar
Triangles,” IEEE Trans. Antennas and Propagat.,54, 1, pp. 42—49, Jan.
2006.

* R. D. Graglia, “On the numerical integration of the linear shape functions
times the 3-D Green’s function or its gradient on a plane triangle,” IEEE
Trans. Antennas Propag., vol. 41, no. 10, pp. 1448-1455, 1993.

* Wilton, D.R., S.M. Rao, A.W. Glisson, D.H. Schaubert, O.M. Al-Bundak,
and C.M. Butler, "Potential Integrals for Uniform and Linear Source

Distributions on Polygonal and Polyhedral Domains,” IEEE Trans.
KAntennas and Propagat., 32, 3, pp. 276—28lI, March 1984. /
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Note 2 EFIE in 3-D: Rectangular and Triangular Surface Patch Modeling

Singularity Cancellation

Observation point

N z
. 2 2 2
ﬂm\ ? 3/\.&\” Ty +2
‘ ITax / 1 3
V\J< L
2 X —~ iy = Iy —
Kmax QJ
B
a We wish to evaluate potentials of the form ) 2
o IR
=] A(r) dD’
P 4R
- H(r) /
 Subtriangle integral has the general form
ycotgy
j chotm X,y dxdy I j H [x uv),y(uv ]j(u v) dudv
J cancels smgularlty of H
A Singularity Cancellation Approach
f OX ax\
(h ycotgy Vy Uy j(u V)za E
I chot¢L H(x, y)dxdy:I J-UL H[x(u,v),y(u,v)]j(u,v)dudv Sy oy
ou ov
=], v ~v O H [x (), y (wvm)] 7(u, ven) da o dr
S— el
v=v (1-n)+vn [Reverse the order of integration
\ and normalize the interval on the
L inner integral
TRANSFORMATION j(u,v) INTEGRATIONLIMITS
. =Intan£:—sinh‘15 R =Intan— ¢LU
Radial-Angular 2 y
coshu
v =R Voo =1, \/z (hcoshu)’

» For more possible transforms, see M. M. Botha, “A family of augmented Duffy
Transformations for near- singularity cancellation quadrature,” IEEE Trans.
Antennas Propagat., 2013.
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Note 2 EFIE in 3-D: Rectangular and Triangular Surface Patch Modeling

Radial-Angular Integration

Integration
uU

domain,|z| >0
u

7 Integrand = const. v
for const. source,
w=0
4“ — o
u,

Integration
domain,z=0

Radial-Angular:

 Integrates static kernel with constant bases exactly
(rectangular integration domain needs one sample pt. @
only; more sample pts. needed to handle variation of
bases and exponential phase factor)

* Integration domain insensitive to Z variation of obs. pt. @

» Above features suggest this as the method of choice

Several Singularity Cancellation Schemes
Have Been Analyzed in Detail

» Khayat, M. A., D. R. Wilton, and P. W. Fink, "An Improved Transformation
and Optimized Sampling Scheme for the Numerical Evaluation of
Singular and Near-Singular Potentials," IEEE Antennas and Wireless
Propagation Letters, Vol. 7, pp. 377 — 380, July 2008.

* M. M. Botha, “A family of augmented Duffy Transformations for near-
singularity cancellation quadrature,” IEEE Trans. Antennas Propagat.,
2013. (Of several schemes tested and compared, the radial-angular
scheme was found to be the most effective for both singularities and
near-singularities of the form 1/R.)
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Note 2 EFIE in 3-D: Rectangular and Triangular Surface Patch Modeling

Singularity Cancellation Approach for Self and Near
Terms

Possible observation
points
YA

Soprce \v

Radial Transformation Removes Singularity, But
Leaves a Non-Rectangular Domain

h ycotdy pdp
. . , B p+22+h?Isin? ¢ . . N
I f A5 (r)G(r,r')dxdy = LUL A5 (r')G(r,r')RdRd¢

0 ycotg,

C

= [1|| gl [ ()6 (r.r) R |d,
U ——p— hising
where R? = 2 + p?, R=(1-7)|z|+7y2* +hfsin ¢

Constant 1
R

contours
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Note 2 EFIE in 3-D: Rectangular and Triangular Surface Patch Modeling

A Second (Angular)Transformation on ¢
Regularizes the Domain

(et du = i \

I WZQ +n?/sin’ g —[2]) [ A5 ()6 (r.r) Rdn}dqﬁ sing

¢

Uy

\/ u=|ntan5,
u | [ Vz2+h*cosh®u—z| |1 ., | ,
zj. [ " ‘ ‘JJ.OAJ.(I’ )G(r,r)Rdn du = (Sin¢)_l:coshu,

_ 2 2 >
(UU_UL)(\/ZZJthCOShZu“)_‘z‘) N R=1/z" +h* cosh ‘4
) ZAEZ;\MW] 2A° coshu® R(i’j)Aej(r(i'j))G(r,r“'j))

[ Domainis insensitive }

W to z for small z/h !
¢ h Y
R=[z°+ u=Intan=
P, I R_|Z| sin’ ¢ C XA 2
=150° L U gm———==—=<JcC
[ R AR N RN
AT TIrTrTT Integrand is constant for N \\_ \‘_\\
[ [ 1 h static kernel, constant A A ¥
90° B T rTT o basis function, and z = 0! - _; - _) - _)_ M
¢u A l ! | B u I 1 7 2
= 600 UA B

The Radial Transformation Introduces Branch
Points into the Basis Functions

@sformation results in a "brancm

point" singularity in the basis functions:

h?AS (r') = A+X pcos¢g +§ psing
X y

= A+XVR*—z% cosg+Y~R* —2°sing,

;

but VR?—z% = 22\/R/|z|+1 \/R/|z|—1.
\ﬂ_J

= Sqrt(R/|z] - 1)

~ % 2
ggrll\;iq]zt‘)c’th = = = Sqrt(R/|z| +1)
EE VY V4
The non - polynomial - like behavior as R 7
R — |z|implies that Gauss - Legendre os

0 T
Qadrature will be ineffective. j 1.000 6.000
R/|z|
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Note 2 EFIE in 3-D: Rectangular and Triangular Surface Patch Modeling

A Special Quadrature Scheme or an Additional
Transformation Handles Branch Points in the Basis
Functions

@nch point singularity in basis functi(h

heAS (r')= A+ XVR? - 2% cosg+§VR* —2° sing,
=A+\/R—|z|(2\/R+|z|cos¢+9./R+|z|sin¢)

Weights and sample points
for integrating the function set

{77", 77"\/5}, h=012,. N

e Let n=R-|z| >0,and develop special

quadrature rules for 77% (c.f., table at right)

Note \/R+|z| =\/77+2|z| =2|z|\Jn/(2|z)) +1

e Or make the substitution * =R -|z| and
use Gauss-Legendre quadrature

Nodes 77;

Weights w,

0.12606123086601956

0.3639172365120473

0.7139387691339825

0.6360827634879527

0.045088504179695364

0.13965395980291434

0.34872938419346483

0.45848221271917206

0.8306719075452189

0.4018638274779136

0.019532819681463730

0.06236194190019799

0.17339692801497078

0.25969509521658130

0.522956026924229700

0.40692913602039693

0.88905249698491430

0.27101382686282377

The Same Subtriangle Approach Can Also Be Used to
Handle Singular and Near-Singular Integrals on
Rectangular Domains

Only the Subtriangle-to-Rectangle Mapping Eqgs. Change
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Distribution of Sampled Points in
Example Triangle

Rossi & Cullen Triangle: Obs =(0.25,0.5)

(0,1,0) ! ‘
! ! @ Triangle 1
® ! | @ Triangle 2
| | O Triangle 3
075+ @\° ‘
+ ° . °
Robs o )° !
05 | e o
() I
()
© .O o o
(0,0,0) 2 100 o1 o ! N
edge length =— o o e e
10 ) | |
0 o i o 0
0 + + + +
0.00 0.20 0.40 0.60 0.80 1.00

* L. Rossi and P.J. Cullen, IEEE Trans. AP-47, pp. 398-402, April 1999

Calculation for Near-Singularities with
Projected Obs. Pt. Outside Triangle

Rossi & Cullen Triangle: Obs = (-0.5,0.5)

Near-singularity 1

@ Triangle 1
(0,1,0) @ Triangle 2
o Triangle 3
0.75 | |
Ros o o
+ 05 | DO B R
0.25
(0,0,0) (1,0,0)
0 \\\\\\\\\\\\\\\\\\\

-1.00 -0.75 -050 -0.25 0.00 0.25 0.50 0.75 1.00

* Note that the contributions from the integration domains of subtriangles 1 and 3
that lie outside the original triangle are completely canceled by the (negative)
contribution of subtriangle 2

* Note also we’ve introduced a ficticious singularity at the obs. pt. from each of the
three subtriangles, but the singularity cancels when contributions are summed
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Note 2 EFIE in 3-D: Rectangular and Triangular Surface Patch Modeling

If the Projected Obs. Pt. Falls Outside a Triangle, at Least
One of Its Area Coordinates is Negative

i
\EL& <0/
1
\ 1

Projected Obs. Pt.:
r,=r—nn-(r-r;), j=1,2,0r3
Area Coords. of Projected Obs. Pt.:

ﬁ‘le(ro -r,)

0_
2 2A°

0 E 2 x(rp— 3)
%2 = 2A°

&=1-8-¢&

If area coordinate &’ is negative, then

the contribution to the integral from
Wtriangle I must also be negaW

Scheme is Efficient and Essentially Arbitrary
Accuracy Can Be Obtained...

z=0.0
O » >
(7} 9 - / M
-~ C
m .
2 g
a -
E B
8 7 ! il //
E gl _
= B
2 r
0w 5+ {‘
(v B
(@) B _______‘
-
[«}) 4 N :
Q - Legend
E 3 —— Radial-Angular (Polynomial-Root Quadrature) -
=) - —— Radial-Angular (Gauss-Legendre) identical, enhanced
Z B —l- ArcSinh }performance forz=0
2 —A— Extended Duffy
- —&— Extended Radial
1 PR ISURTRRUIS YR URENTINS oo o B O A B

0 5 10 15 20 25 30 35 40 45 50 55 60 65
Number of Sample Points
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Note 2 EFIE in 3-D: Rectangular and Triangular Surface Patch Modeling

... Including the Nearly Singular Case

|z|=0.01

=
o

1
\

-

Number of Significant Digits

5 : ..............................................................

4t

3 I —f=— Radial-Angular (Polynomial-Root Quadrature) }enhanced
i -~ Radial-Angular (Gauss-Legendre) performance, z >0
- -l ArcSinh }similar performance for z >0

2 f —A— Extended Duffy .
F + Extended Radial (Polynomial-Root Quadrature l

&® b b b
0 10 20 30 40 50 60 70 80 90 100

Number of Sample Points

Example: Current Induced on Sphere by a
Plane Wave Incident along the Negative z-Axis

é E inc Il (@B.Interp)

44778
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Note 2 EFIE in 3-D: Rectangular and Triangular Surface Patch Modeling

Example: Current Induced by Plane Wave

Incident on VFY-218

500 MHz
PC compuied with Mercury MO
*157. 000 unknowns

Courtesy of John Schaeffer

Voltage Sources

oEi

tan

= E}, ==V ®=-2V,6(z) on S f
ja)Atan (J )+Vtanq)(‘] )= _Eian
= -<AnE>=V, [ A,2 5(z)dzdy 0 ] )
S Hf_/ .
:{latz=0,m:6 .
0,otherwise :
[3 <A_,E >]: Vyls |« TOW 6
B Vo l,, m=6 :
|0, otherwise .

=0 = E;
e J must produce a potential difference between
triangles at source terminals: z[ 7t
B

wn =0 except at voltage source A

—»

® =V, u(z) on S

unit step
function

e
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Note 2 EFIE in 3-D: Rectangular and Triangular Surface Patch Modeling

Impedance Loading

b

e Loadis equivalent to a voltage
source V,=-ZI;

¢ Replace voltage vector by

_ YA
0 [6

y _
ZLIG
+

<A E'> =|=Z 1l | = =15 20,5 ]

O —

>

o = [Z,,][1.]=1s|Z.0s5, | +Voltage /and or E'terms

e Transfer load terms to other side of matrix :

\Zmn + Z, 06, |[1,]=usual voltage /and or E'terms
%/_Y/
addload to
matrix diagonal

End of Note 2
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Note 3 The 3-D Magnetic Field Integral Equation (MFIE)

The 3-D Magnetic Field Integral
Equation (MFIE)

Donald R. Wilton

3D MFIE Formulation

(E'H) LEFIE: “E_=E._, FES}

~

\

MFIE (two approaches):
1) J=AxH" +lim AxH,

(E°,H°) rs’ »
(eq. source condition)
,‘S_riﬁ (Ei,Hi) 2) n><H'+!riTr2r1><HS:0,“
i rts T~ \/ (null field condition)
| J Since J=lim nxH’ —lim nxH?
\ (0,0) s s
Seo 1 the approaches are equivalent!
\\ ’ ~
(ES, HS) \ l\n \ /
e -’ ’ TrJ« S = r approaches S from the exterior,

rT S = r approaches S from the interior
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Note 3 The 3-D Magnetic Field Integral Equation (MFIE)

Null Field MFIE Formulation, Limiting Process

ﬂ/lFIE: ﬁxHi+|iTrgﬁst=O, \
r

AS is a very small, flat
_ _ _ where
circular disk of radius a
i Bl [ B
removed from S il s
n —lim AxVx [G*(r.r)-I(r)dS’
AS e/ im ¥ [ (r)-3(r)
®
J =lim fix [V xG*(r,r)-9(r')dS
S—AS s g
, - L
/ ~
I (0,0 r \J
\\ Recall that in homogengk(gus media,
S < \\ O ; R gA(r,r')=G(r,r')I=Z”—RI<—identitydyad
S S n
(B H) v S VXA (1) 3(r) P
~ R P d homrggesirgeous

- AxJ(r')xVG(r,r)

Dominant integrand behavior for small R:
AxVxG*(r,r')-J(r)

- ﬁxVx[G(r,r')I.J(r')} = ﬁx[VG ><J(r' }z—ﬁx{(1+ ij)

A 4 [ 1
—0 —Ax[ (r-r)xJ(r)] T J(r
(r-r)Ad-J [(rfr')-ﬁ]
asymptotic evaluation of integral : \
fix [ VxG"(r,r)-3(r')ds’ J(r)zf” df d__RdRdg [Sincep,dp’:RdR’J
X X ’ ° T) — ,
55 R0 2 B AR and J(r)~J(r")
d?+a?
:M{ﬂ} - J(r){i_ zd 2:| a0 ‘J(r)sgn(d)
2 | R ey 2 ||| Jd2+a 2
= NxH; =lim ﬁXIngA(r r')'J(r')dS' = lim J(r)sgn(d) = _w
A7 s L ’ 40"

N B : Y,
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Note 3 The 3-D Magnetic Field Integral Equation (MFIE)

Integrand Approaches a Delta Function in
the Limit d-2>0

Integrand vs. rho'

45000

40000 -
o o
c — =
© 25000 - d_O'OS
g 20000 - d=0.02
£ 15000 1 —a=0.01

10000 - —d=0.005

5000 -
0 ! ! !

0 0.02 0.04 0.06 0.08 0.1

rho'

Simple Interpretation

Current jump condition:

J=hAx(H, -H,) AxH! s ™
After removing the
By symmetry,
ysy y AS singular contribution,
theintegralisnolonger

+J (strongly-)singular and is

nxH, =-nxH,

~ +
=nxH, =

sometimes written
PVIdS' or deS'
S S /

() .
Hence IrITrE n><HA_—T and MFIE is K

%r)—ﬁxIngA(r,r’)-J(r’)dS’ = AxH', reS
S

Recall thatin homogeneous media, this reduces to

ﬁ XV ng (r, rr) J (r/) (layered

media)

homogeneous
media

- AxJ(r')xVG(r,r)

@+ﬁxJ‘J(r')xVG(r,r')dS' = AxH', resS
S
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Note 3 The 3-D Magnetic Field Integral Equation (MFIE)

Specialization to Infinite Plane

- jkR Al
VG (r.r)=—(1+ ij)%”)

~ 7R®
n
] x[\](r')xVG(r,r’j
= J
/ If Sis aninfinite plane, thenJand VG arein the plane, \
and J(r')xVG(r,r') is parallel to i; hence
« [Ax[I(r)xVG(r,r)ds'=0, r'=res|and
S
« |J(r)= 2ixH', |(Physical optics (PO)current)
o )

Choose Surface Divergence-Conforming Bases
for Expanding the Current and Testing the MFIE

S

= [Bulll.]=[1,] where
B = %<Am;An>—<Am;ﬁ><ngA(r,r’);An>

i 0@ i
I, = <A, ;nxH >

Note other basis choices
are possible,even desirable!

with corresponding element matrix
and element vector

1

e no integral contribution
E<Ai;Aj > e=f

from flat subdomains!

f
ﬂi? =

—<A5;AxVxGH(rr');A} >, e f
\\I:e: <AS;AxH' > /




Note 3 The 3-D Magnetic Field Integral Equation (MFIE)

Features of the MFIE

* Applies only to closed bodies

* The contribution from the integral term vanishes on flat
surfaces, r in the surface plane

* MFIE is usually better conditioned than the EFIE (since J
appears outside the integral, it is a 2"d kind integral equation)

» It appears possible to use either div- or curl-conforming bases
* MFIE is sometimes slow to converge compared to EFIE

 The MFIE operator is important since it appears in both
combined field integral equations (CFIE) and in dielectric
formulations (PMCHWT)

Why Does the MFIE Apply to
Closed Bodies Only?

mthelimit as 7 — 0,null field surfaces (dashed lines)degenerate \
to asingle surface S- —» S*with one magnetic field; effect of surface
currents J* at r' may be added in the surfaceintegral for r' = r, however r
is below J*(r) (as before),but above J7(r) so there's a sign differencein
the singular contributions:

2

J+(r)_‘]_gr)_ﬁxingA(r,r')~[J*(r’)+J(r’)]dS’ = fixH', res”

@is identity cannot be solved alone for two unknowns, J*(r), J(r). /
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Note 3 The 3-D Magnetic Field Integral Equation (MFIE)

ldentity Can be Combined with EFIE to Obtain
Opposite Side Currents Independently

n
. J
~ S —_— “
u u
«° S J- o~
0-(J*+J’)=0
EFIE:

£ 3r)

2J(r)
ja),uJ. g“(r,r')-(mld&—% J. K“’(r,r’)V'-{WldS’ =E..

/Magnetic field identity : \

20 Z(r)——JZ(r)—“xSJ:ngA(r,r’)'[J+(r')+J‘(r')}dS’ = AixH', res’
e Solve EFIE for J=J"+J", useresult in identity to obtain J*:

J5(r) = @ + AxH' iﬁxIngA(r,r')-J(r')dS', reS*
3

e Or a)solve egs. simultaneously or b) add and subtract them to get two

\ equationsin two unknowns, J*(r'), J7(r’). /

Scattering by Conducting Sphere
Modeled Using 552 Triangles, 828 Unknowns

RCS, Conducting Sphere, radius 0.3 wavelength i
, |
g
6 P,
N -
N P .
4 NS / \.\
N %
\-\h‘
@ 2 \\\ - MFIE
Py N - EFIE
£ o ‘ ‘ e CFEE
45 90 135 180
2 \\{
4 N
-6
Theta [deg]
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Note 3 The 3-D Magnetic Field Integral Equation (MFIE)

End of Note 3
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Note 4 Combined Field Integral Equation (CFIE)

Combined Field Integral Equation

(CFIE)

Donald R. Wilton

Interior Resonances

* For closed bodies, the EFIE cannot distinguish whether the\

excitation sources J' of Ei are interior or exterior to the PEC
* At cavity resonant frequencies, source-free solutions of
the EFIE exist (if an interior source of the same frequency,

exists, the resulting fields will generally be infinite).

* The surface currents corresponding to source-free solutions

of the EFIE are simply the cavity wall surface currents
&f the associated resonant cavity mode. /
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Note 4 Combined Field Integral Equation (CFIE)

Interior Resonance Properties of EFIE

@ a)za)p’ p=1’21”'
/e Atinterior resonance fregs., there exist

J homogeneous solutions J, to the EFIE:

{ja),uJ'G(r, rJ, (r)ds’

-_ije(r,r')v'-Jh(r')ds'} —0,
Joe S tan

e Inmatrix form, this means

/—\[Zmn][ln]zo = det[Z,]=0

e Unless the Green's functionis replaced by anon-radiating form,

e M coskR . , .
e.g., — , the determinant doesn't completely vanish at real
47R 47R

resonant frequencies because discretization errors "leak" radiation.
e The problembecomesill-conditioned, however, and solutions can be
Kcontaminated by homogeneous solutions from nearby complex frequencies.

The MFIE at Interior Resonances

e Though the physical explanation differs from the EFIE,
the MFIE also has homogeneous solutions atinterior
resonant frequencies

e The MFIE homogeneous formis

—th(r) —ﬁijng(r,r')-Jh(r')dS’ =0
S

e The matrix MFIE homogeneous formis

\ [Bulll,]=0 = det[3,,]=0
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Note 4 Combined Field Integral Equation (CFIE)

Linear Operator Problems and Uniqueness

e L isalinear operator if
L(au, +bu,)=alu, +bLu,
for any functions u;,u, ,any constants a,b. (Both the
EFIE and MFIE arelinear operator eqs. with u=J))

e Theoperator £ hasanon-trivialhomogeneous solution
if there exists afunction u, #0 such that Lu, =0
(u,isnotunique since Cu, is also ahomogeneous
solution: £(Cu,)=CLu, =0)

e If £ hasanon-trivial homogeneous solution, the operator
equation Lu=f hasnounique solution, since for
every u a solution,u+Cu,,C #0, is also a solution:

L(u+Cuy)=Lu+C Ly, =Lu=f

e Different solutions Lu, = f, Lu, = f ,u, #u,, may differ only
Unigueness is proved by
assuming u,—u,=u,= 0and
proving a contradiction!

by ahomogeneous solution:
f-f=0=Lu-Lu,=L(u,-u,)= u,—u, =u,

Linear Operator Problems and Uniqueness

e Lu=f hasaunique solutionif and onlyif the
only solution to the homogeneous equation
Lu, =0 is the trivial solution,u, =0

\\ ( Uniqueness is proved by
assuming u—u,=u,#0and

proving a contradiction!
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Note 4 Combined Field Integral Equation (CFIE)

The Combined Field Integral Equation (CFIE)

e Remarkably,linearly combining the EFIE and MFIE
eliminates difficulties with interior resonances!
e Write the EFIEin the abbreviated form

. discretize
_Etan(‘]):Eltan = [Zmn][ In]:[vm]
and the MFIE as
discretize

—fixH()=hAxH, = [g,][L]=][1]
with r TS understood, and combine them as

_EalY) (J)—ocﬁxH(J)=%+ocﬁ><Hi
n n

e Indiscrete form, thisis

i) e
n n

Uniqueness of the CFIE

e To prove CFIEuniqueness,assume 3 J, # 0 satisfying

——Eta”(Jh)—aﬁxH(Jh)zo, resS

e Multiply eq. byits conjugate and integrate over S:

Etan(Jh)z
==

tlaff Hu (3,)) |dS

Power radiaEedintoS, >0
+2% Re[[E(3,)xH"(3,)-(~A)]ds =0
n S

Uniqueness theorem:

tan

. —fAxH|_ =0 (contradiction!)

\ = J, =nxH

a . L . )
where — ischosen positive andreal. If 1) no sources exterior to S°,
1 . 2)E,,=0orH,, =00nS",
unique. . )
thm. —>E=H=0 exteriorto S
® :>Htan:00n S_’ Etanzoon Sil 3 H ZOOH S+
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Note 4 Combined Field Integral Equation (CFIE)

Uniqueness of the CFIE, cont’d

elf £J, =0 (EFIE) and £J, =0 (MFIE) at w = @,
then why doesn't the linear combination also
have ahomogeneous solution:

?
EJh+aICJh:(£+aIC)Jh:O (CFIE)
e Ans: The EFIE and MFIE solutions are different!
\ £J,=0and £J, =0 > LJ, +akJ, =0if I #J,

VxVxE—kiEinn S,
NxE=0 onS

xVxE-kE=0in S,
AxE=0onS
=E=-joAJ,)-V®(J,)

VxVxH—kﬁH:Oin S,
nxH=0 onS

1 ,
—H=L1vxAQ) < E=-~VxF(M))
u

duality
E=0 H=0 “ E=20
EFIE MFIE

Log,, of Determinant vs. Frequency,
TE Circular Cylinder

120

100 \

80 \
Log

Determinant ——efie
60 f=ssuss —=— mfie

cfie

40

20

0 100000000 200000000 300000000 400000000

Frequency
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Note 4 Combined Field Integral Equation (CFIE)

Approx. Condition Number vs. Frequency,
TE Circular Cylinder

500

450

400 -

Condition 350 1
Number 300 - ¢

>

—— EFIE

l
250 < - MFIE
200 | + CFIE
150 - |
)g
50

%WWK

0 100000000 200000000 300000000 400000000

Frequency

Condition Number

If Ax=Db

Largest eigenvalue of A"A
Smallest eigenvalue of A™A

ol dAPwAn ||5b||}
K Al

and where
(A+SA)(x+6x) =b+5b.

then cond A =

and

Condition number is the single
most important figure of merit
in solving linear systems!!

Roughly, cond A measures how muchrelative errorsin A andb
magnify the relative error of the solution.

Alternatively, log,,cond A estimates how many (decimal) digits are
\{st in solving Ax =b. l.e,it estimates the worst - case loss of precision.
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Note 4 Combined Field Integral Equation (CFIE)

End of Note 4
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Note 5 Modeling Homogeneous Penetrable Materials - PMCHWT Formulation

Modeling Homogeneous
Penetrable Materials ---
*PMCHWT Formulation

Donald R. Wilton

Scattering Notes, pp. 37,38

*Poggio, Miller, Chang, Harrington, Wu, Tsai

Formulation of Problems Involving
Piecewise Homogeneous Media

(e (97w
N e

o (E*,H*) areincident fieldsi.e., they are radiated
by (J*,M*) in a homogeneous medium with

parameters (£, 1)
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Note 5 Modeling Homogeneous Penetrable Materials - PMCHWT Formulation

Exterior Equivalence,
Interior Null Field Conditions

(e (97m)

L J=fAxH )\( (E"H)

Tested null field conditions:

+ + o+

=@ s 1) <A E(J,M)>+<A_E'> = 0,
_|u

T =\ 2) <A H@,M)>+<A H > =0,

relims

rtS

relimsS
TS

Interior Equivalence,
Exterior Null Field Conditions

() 0.0)

~J=-nxH

—-M =-Exn

Tested null field conditions:
3) <A ;E(-J,-M)>+<A,;E" > =0,

4) <A HEI,-M)>+<A ;H > =0,

relims
s

relims
ris
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Note 5 Modeling Homogeneous Penetrable Materials - PMCHWT Formulation

The PMCHWT Equations

Any linear combination of 1)\
and 2) and of 3) and 4)
Tested null field conditions: constitutes a valid coupled

) — _ . pair of integral equations
1) <Am’E(‘J’M) >+<Am’E = =0 re Ir'TrES for unknowns J and M

. i ; ....though their solution may
2) <A HQOM)>+<AH™> =0, relimS | potpeunique at all

rts .
) ) Qrequenues
3) <A EEI,-M)>+<AE>=0 Tre "IQS
r
4) <A, ;HEIL,-M)>+<A ;H >=0, re Iiin;S
r

PMCHWT is both unique

by equating 1) to 3) and 2) to 4); it is equivalent to | and well-conditioned

enforcing continuity of tangential Eand H at S:

lim<A;EQ,M)>+<A_;E" > = lim<A_ ;E(-J,-M)>+<A_;E >
rTs NS

Q’KAMH(J’M)>+<Am;|'|+ > = lim<A ;H-J,-M)>+<A ;H >
rTs ris

Most common formulationis PMCHWT, obtained [

Field and Current Representations

Represent fields via their potentials::

E(d M) = TjwA* () T VO (J) T ——VxF*(M)
=

= 7 ja),uiJ.Gi (r,r’)J(r')dS'J_r
s

FlimVx|G (r,r)M(r')dS’ _jk*R
1S £ (r.r)M(r’) [G+(r,r') _ £ J
47R

V e ’ ’ ’ ’
jw3+£G (r,r)v-J(r')ds

H(xJ,=M) = FjoF* (M) F V¥ (M) éVxAi(J)
e

\Y
—— | G*(r,r")V-M(r')dS’
~_Je (rr) VM)

- ngiIGi(r,r’)M(r’)dS'i
S

\ irrITiinSinGi(r,r’)J(r’)dS’
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Note 5 Modeling Homogeneous Penetrable Materials - PMCHWT Formulation

Expansion of Equivalent Currents

Represent currents using div-conforming bases:

J(r)zglnAn(r)

M(r)zgvnAn(r)

Substitute theseinto the tested (weak form) of the
\\ PMCHWT equations and rearrange.

Discretized Form of PMCHWT Equations

|:Zr:n+zr;n] [_ﬂn:n_ﬂr;n] |:|nj|_|:vnlli|
[Bin+ B ] [ Yout Yo %] L1
where

Z: gyt = jplt 4L gk :jnnﬁ{ki”Gi(Am-An— L V-AmV-An)dS'dS}
Jo 58S

mn “mn mn kiz

LJ_r:m :ﬂi <Am;Gi!An >| Srﬁn :i+<V'Am,Gi,V‘An >
e
e—jkfR
f == <AuVGx A, > =—[[A VG xA,dSUS , G ==—,
85 47R

Vi=<A E -E > I, = <A, ;H -H >,

m

J M ) .
Note that iE’ i?terms cancel bothin formulation and
watrix element "self" terms (i.e., %<Am;An >terms).
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Note 5 Modeling Homogeneous Penetrable Materials - PMCHWT Formulation

Row Scaling

Consider

G
[am ][] =[b0] =] : o
At A [ XN bN
To scalerow p by C,,
- Multiply all elements of pthrow of [a,,|by C;

- Multiply pth row of [b,]by C;

)y TN b1

row p -> CRapq CRapN o= CRbp

: : Y
\ K oAy _bN |

Consider

[amn][xn] - [bm] =

Ay Ay [ Xn bN
To scalecolumn q by C_,
- Multiply all elements of qth columnof [a,,]by C.

- Divide qth row of [x,]by C.

column g X
a; Cca1q =Y : bl
: : : X, IC. |= :
Ayp CCaNq Ay : bN
X

- Note that column scaling scales the solution vector,[x,],
which must be "unscaled" after the system is solved!

65




Note 5 Modeling Homogeneous Penetrable Materials - PMCHWT Formulation

Normalization and Symmetrization of
PMCHWT Equations

Normalize and symmetrize the system matrix by

- multiplying first columnblock by 1/ 7,, renormalizing
the current vector 1,

«multiplying the secondrow block by — jz,

- multiplying the second columnblock by j:

[z: +z- e e
{ } o] {nonnHv;n }
it [ (o) I

Tl
Note that, unfortunately,
Z:n—n Z_ Zr;n + Zr;n

kﬂO(YnTn—i_Ymn)no[ﬂJrz'i_ﬂmgj ¥ 770

Far Field Computation

E——> - jo00+¢)-A+ jon($0-0¢)-F (Note VO ————joif-A)

H —— — jo(00+¢)-F + 12 0p-46)-A (Note VY ————jofr-F)
n

+e—jk+r

j\](rr)ejkﬂ‘.r’d(s!z H [[\n]t[ln]
% dxr i
ge )k’ N oKy o ge . 0
F= jlvl(r )ekFrdS’ ~ [A, TV ] N\ 9
drr < Axr o é
/'t =Xcos gsin O+ sin gsin 6+ 7 cos @ r .-

0 = XCOS$#COS O+ sin cosd—2sin &

@ =—XSin g+ Y cos ¢
[~n]z{ A, (1 ejw‘r'dS}
[ £ (r)
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Note 5 Modeling Homogeneous Penetrable Materials - PMCHWT Formulation

Surface Magnetic Field, H,
Dielectric Sphere

[ ) S — N — E— — N g -
.r,r‘ 13 __"-"_E S b .'._ ......... .'__._ . ...................
i R
1.: R .i. ......... - i ......... .i. ......... i ........ e .i. ......... | el
| | | | | | |
N T T R f (P S—
P B S S I — I ool i Analytical
; | @ E-FEMEFIE
; ; ; 4 pisleeisie |E
L froemenmen oty o e e g S ererrrer T T
|:|.‘ :I Ll L i Ll L 1 i Ll L 1 I Ll L1 I Ll L 1 I Ll L 1 I Ll L 1 i Ll L 1 i Ll L 1
fi 20 ] & 188

#i 100
K] |I|.l.'_l-: |

120

14

Surface Magnetic Field, H,
Dielectric Sphere

1Ih L

14 E

1.2
ine 1.2

oE

o

H H
i i
[— .-...!. ......... .!. .........
i i
i
L] L]
i
1

L

[
i
....... .!..-..-. ..!...-..-..
! !
! !
[
1
[

.F.n.l.l:"!il!ﬂ

i| @ E-FEMEFIE

! | 4+ Dialectric |E

100

120

13
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Note 5 Modeling Homogeneous Penetrable Materials - PMCHWT Formulation

Radar Cross Section, Dielectric Sphere

) . EZ
ale, k) = lim dwr? |

R |Ei.r||' -

............................................................. =L
PPN SN NS S S : : T S S .
a |d3 - - i
an e I I S I o N i Analytcal

I'| @ E-FEWEFIE
|+ Dislestric B

End of Note 5
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Note 6 Coupled 3D Finite and Boundary Element Formulation

Coupled 3D Finite and Boundary
Element Formulation

Donald R. Wilton

Scattering notes, pp. 39-41 3D-FEM
pp. 41-43, hybrid FEM/BEM

Strong and Weak Forms of the
3-D Helmholtz Equation

(&0 140 )((E‘,H‘)

n

Strong form::
S | Vxu'VxE-kieE=—jou,d™, reV

Weak form:

<VxQ  u'VxE>+jwe, <Q & E>

jou,

o

- §Q, fixHdS=—-<Q,, 3> reV
S \

(Vanishes if either
LQ‘“ or nxH vanisheson S
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Note 6 Coupled 3D Finite and Boundary Element Formulation

Volum? Coordinates for Tetrahedral Meshes

Volume Coordinates:

V. )
=L 1=1234
él Ve
— §1+§2+§3+§4: 1

Geometry Parametrization:

r=ré+ré+r;&+r.4,

r’ =vector from global origin to
I th vertex of element e

S
Traversing the path from vertices 1-2-3
Parent element should determine outward normal A
&1 according to theright handrule.

Geometrical Parameters Associated
with a Tetrahedron

Our convention: Choose vertices

1,2,3, such that traversing them in
order produces an outward normal
by right hand rule

Edge vectors &; = v —rh by = g

by=5 % e 1,2,8,4)
i

e _ 11a-(#2ax854)]
Volume e = 5

AR

_ 5

="
A; = area of face i,
fe; = height of vertex i

3 Coordinate gradients, vE = EE;{‘,{“ ,

v = -M Ve = fuxbs

_ E 'X.-Eﬂ
Vi = =

« Gradient directionis from face i to vertex i =—h, Vi, = —WE - Ve — iy

» Gradient magnitude =changein &, from face i
to vertex i + distance (=1/h,=|v&|=1/h)
=>Vg :_ﬁi Ih;




Note 6 Coupled 3D Finite and Boundary Element Formulation

Local Edge Numbering and Reference Directions

 Note /;, =0.

« Also ¢ =—£,
for independent
edge vectors,use

SO

\onlyfij, j >0
Localedge Edgereference
number direction

1 £12 3
2 KlS
3 614
4 £,
5 4,
6 £y

Parameterization of Integrals and Numerical
Integration over Tetrahedrons

[frav = evej:j:’fkj:’é"‘fk f(r)dedede, i=j=k

Ve

K
~ e e g(k) e ¢(k) e g(k) e ¢(k)
~ oV Elwkf(rl i +r2§2 Tl +1e, )
je k:].

Table 13 Sample points and weighting coeflicients for K -point
quadrature on tetrahedrons.

Sample Points, ggi“},g{z”},g_f‘m) Weights, 1wy,
(6 =1 g™ — gl — ™)
N ...or use the exact result
K=1, error O(£7):
(0.25000000,0.25000000,0.25000000) | 0.16666667 J- ErEPEE Y = 6V ! plylo!
162 9354 =
K=4, error O(£3): ve (a+ﬁ+y+5+3)!

(0.58541020, 0.13819660, 0.13819660) | 0.041666667

0.13819660, 0.58541020, 0.13819660) | 0.041666667

0.13819660, 0.13819660, 0.13819660) | 0.041666667

(
(0.13819660, 0.138196560, 0.58541020) | 0.041666667
(
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Note 6 Coupled 3D Finite and Boundary Element Formulation

operties of Curl-Conforming Bases
Needed on Tetrahedral Meshes

« Assume medium parameters
constant within a tetrahedron

» Make tangential electric field
continuous across medium
boundaries by defining DOFs at
edges

» Make interpolatory by allowing
only the basis associated with
the DOF at an edge to have a

Qnit tangential component there

Planar Triangle Curl-Conforming Bases May
Be Extended to Tetrahedrons by Viewing

The

Zxp,

ij

Q'e'(r) e 2kfxpij —

m as Embedded in Infinite Cylinders

Zxp,

Q; ()

=L (éiv§i —(ijé),
(r) = 26,(VExVE),

j>i, reVe®
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Note 6 Coupled 3D Finite and Boundary Element Formulation

Demonstration of Interpolatory Properties of
Curl-Conforming Bases

Q; (r)=¢,(&V¢E,-¢,V¢)
« V& is L tofacei and hence to edges jk, k¢, /

:Qﬁ(r)‘ -ij: Qﬁ(r)‘g G = Qﬁ(r)‘ézo-@jzo

- V&, is L toface j and hence to edgesi/, /K, ki
= QS ( r)‘gjzo'z” - Q; ( r)Lg sz - Qiﬁ ( r)sz:O'zki =0

« Finally,

5 (r) £yl -(6V4-£,4)

A

&=£,=0 % /bl(

fk:f:z:O.eij -
h h
ij [SZ. __J_‘fj FI

=/
hJ
\:‘fi"'fj =1

Discretized Equations Obtained by
Substituting Representations for Electric
and Surface Magnetic Fields

Ny Ng
E~ = VY Q (r) + Ve Q r
nz; Hr)—‘ n() ; Hr)_‘ NV+n()

~ volume = surface
DoFs DoFs

* 2 equation blocks,

3 vector unknown blocks
* |f Sis not PEC or PMC, need
another block of equations
to determine InS and supply
radiation conditions

I—V:| S is PEC

:H:Ir?] S is PMC

PEC: AixE| =0=[V’|=0
PMC:axH| =0=[1]=0

Ns
J=fAxH=~) 1°Q0(r)

n=1
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Note 6 Coupled 3D Finite and Boundary Element Formulation

Matrix Block Definitions

i<V><Qm,,ur1V><Q >+ Jog, <Q,,5Q, >
Jors
VAN <VXQ 1 VX >+ jogy <Q 6 >
Ja)luo Volume
1 integrals!
Yoo =——<VXQ 0. 1 VXQ > + jos, <Q .6, >
jou,
Yrr?r? - <VXQN +m ’:urlvng +n> + ngo <QNV+m’grQNV+n>
jou,
Vo= —<Q B> = —<Q O >=—
Indexranges
) =p=12.
> :>p=L2,...,N

p

In Far Field, We Also Know the Ratio of Tangential
Surface Electric and Magnetic Fields ...

In the far field,

rxH=nxH=-——@

| =0 :[|-3]=o:

Note we also know their ratio
for surface impedances: [

Lﬁtz—%: (1]~

S S

surrounding region out

Mesh fills scatterer and
to the far field!




Note 6 Coupled 3D Finite and Boundary Element Formulation

..Or Null Field Condition Provides Add’l Eq. at Boundary

Expressing the magnetic null field condition (see PMCHWT
formulation) using equivalent currents and potentials
provides the missing equation:

“AxH*[I,M]=hAxH™, rTS

_ %_iﬁXJ‘VXgA(r’rI),J(r')dS'+ngoﬁxIG(r,r')M(r')dS'

Hy

1 AxV[G(r,r)V'-M(r)ds’ = AixH"™
Ja)ﬂo S

Relate equivalent currents to fields of the Helmholtz eq.:

NS NS
J=AxH=>Y17Q°(r), M=Exi=) VS A (r)
n=1 n=1

Substituting into above and testing with Q° yields

final matrix equation:
q 75 Homogeneous background
2SS S mn S | _| pinc medium is assumed to be

Integral Equation Matrix Block Definitions

SS

M = jos, <AS;G, A5 >+ L <V-A,,G,V-A, > mn=1...,Ng

o Jou,

ﬁrf;ﬁ: £<QS QS>—i<QS ‘AxV xG": QS
2 Hy
1 1 S . S
=——7/mn——<Q "AxV xG": Q0 > mn=1...,Ng,

\_ 2 Ay
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Note 6 Coupled 3D Finite and Boundary Element Formulation

Pictorial Representation of Surface Bases,
Interior and Surface Volume Bases

Supportof Q, Support of Q;

n ~
n
S
1 n
S
Q,, n<N, Q., N, +1<n<N, +Ng Q), n<Ng
s s _a
A, = Q5 xn
A s
_nanQNv+mr <= Q.

Ny Ns
Ex =3V, QN+ V. Q.M

=1l volume n=1 surface
DoFs DoFs

NS
J=AxH=~Y 1;Q5(r)

n=1

Complete System of Coupled FEM and
Integral (Hybrid) Equations
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Note 6 Coupled 3D Finite and Boundary Element Formulation

Typical Matrix Structure for
Hybrid Problems

L Fan] 0 00 513 o] e aco o0

Check: Reduce Medium to Free Space

1.20E+00
1.00E+00
8.00E-01
6.00E-01
4.00E-01
2.00E-01

0.00E+00

i
Mag J/H_inc (80 1 My ) E
H i

Mag M/E_inc

wwwwwwwwwwwwwwwwwwww
mmmmmmmmmmm

HHHHHH 0

—__ N 7
6.00E-01 \\\ ’/ \\ //

4.00E-01

sooron |\ ] \ /

0.00E+00

HHHHH
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Note 6 Coupled 3D Finite and Boundary Element Formulation

End of Note 6
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Note 7 TLow Frequency Breakdown of Integral and Helmholtz Equations

Low Frequency Breakdown of Integral
and Helmholtz Equations

Donald R. Wilton
Dept. of Electrical and Computer Engineeering
University of Houston
Houston, TX 77096 USA
wilton@uh.edu

Mesh Index Notation
\

Number of mesh nodes or vertices
E - Number of mesh edges

F - Number of mesh faces
B - Number of boundary edges and vertices
\
/ test source
vertex indices u Vv
global edge indices m n
local edge indices i j

\fzie indices e f/
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Note 7 TLow Frequency Breakdown of Integral and Helmholtz Equations

/,
Conductor llluminated by a LF Plane Wave

q(r)

e
Electrostatic limit :

PN |

L4 H_j—_m:ou) =V-J=0()

Einc

S

7
A PEC behaves like a superconductor at DC,
not a good conductor :VxE=0=dB/dt =0,
i.e., no flux penetrates the conductor!

/L"
Magnetostatic problem:
lim ¥=0(), V-J=0
H inc
Eincﬁv

EFIE and Vector Helmholtz Equations at
Low Frequencies

K EFIE (strong form): \

£.Js{jco,uj'G(r,r’)J(r’)dS’—_iIG(r,r’)V-J(r’)dS’} _E™ res
S Ja)gs

tan?
tan

s cLFJ{——_V | G(r,r’)V-J(r’)ds} (=
Joe

tan

= Any divergenceless current (V-J, (r") =0) distributionon S is ahomogeneous
\ solution, £, -J,, = 0,implying non - uniqueness of solutions at low frequenciey

~\

e Helmholtz Eq. (strong form):
LE =V xu'VxE -’ uye,6,E=—jou,d, re D=S(2-D)orV (3-D)
— 220 5 [ E =Vxu'VxE = — jou,d
= Anycurl-free field (VxE, =0) in D isahomogeneous solution, £ .E, =0,
implying non - uniqueness of solutions at low frequencies.

\ 4
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Note 7 TLow Frequency Breakdown of Integral and Helmholtz Equations

Helmholtz Decomposition of EFIE Current

ﬁEFIEcurrentsplitting:

divergenceless,
magnetostatic

——
JO

J=

J 0—0 s JO

V.J*

O@) (real)

+ J*

e Low frequency behavior :

\

non-divergenceless,
electrostatic
==

J° =0@) (real)

=|J* =0(w) (imaginary)

4

Loop-Tree Basis Decomposition

A unit flux circulates
about vertex v

Atree provides a current path from each triangle to
every other triangle, but with no closed paths. Note
the blue arrows form a tree.

\

’ﬂn elemental “loop” is alinear
combination of patch basis

functions to produce a

divergence-free basis function

Ay A
i Cig

V-0,=0 = q=0;

O, = , reS®csuppO,

\\@2, ..., # interior vertices=V -B

[ At low frequencies:

p

. OV forms a
magnetostatic source
(current loop)

. Atrr]ee forms an

electrostatic source
(charge dipole)

n=1 2, ..., # triangles-1=F-1,
w—B+F—1 =E-B =N /
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Note 7 TLow Frequency Breakdown of Integral and Helmholtz Equations

Loop-Star Basis Decomposition

At low frequencies:

« O, becomes a

magnetostatic source
(current loop)

« %, becomes an
electrostatic source
(charge multipole)

\_ 4
4 N\ [ )

« O, isavertex-based source In principle, the loop-star

« %, is an element-based source _ decomposition eliminates
* _ o _j the necessity of identifying
. . bases are linear combinations a“tree” on triangularly

of A}}ree bases and vice versa meshed surfaces

\ 4 \_ )

Loop Basis Representation

e We can write aloop basis O, about interior vertex v containing triangle S° inits support,

suppO, , and with the i - thlocal vertex of S° corresponding to vertex v, in various ways :

Ai+1_Ai—1: fie=_i: L, reS® csuppO,,
£i+1 gi—l 2A i

but perhaps most useful is

O, =

O,=Vé& xn, reS®csuppO,

(e Foran arbitrary, continuous vector A on S¢, we have
[(VExh)-AdS==[(VExA)-AdS = [(£h-VxA)dS— § &A-dC

s° S°

S(Van Bladel, A3.57)
where the contour integral vanishes when contributions from all adjacent triangles With\
a common vertex are added, so that

<O;A>=[0,-AdS=[(AA-VxA)dS = <AMVxA>
S S

where A, =& ,r € §° < suppO, is the scalar rooftop function with peak at node v.
Hence, testing a continuous vector with a loop function is equivalent to averaging the
Qooftop - weighted normal component of the vector's curl over the loop's support. /
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Note 7 TLow Frequency Breakdown of Integral and Helmholtz Equations

Tree, Star Basis Representations
"

( Tree bases are usual basis set but with any tree links forming close

loops removed from the set: {A7*} < {A, }

e Star bases are not uniquely defined; two possible definitions are

1

* * *

pAgA= E o\, op=%1 or o =i€—
n

*

L i
I\where the sumis over edge DoFs for edges of element f (S ) and the signs areJ
chosen so current flows out of triangular face f andinto adjacent faces.

e We note that only F —1 of the star bases are independent since

3, =0
f=1

e The divergence of star basesis simply

n

Vok =Y onV-A,

e The star andloop bases form a quasi-Helmholtz decomposition of J:

divergenceless non-divergenceless
f—/\_ﬁ f—J%

V-B F-1
J(r) = Zl?Ov +jo ZPf**f
v=1 f=1

Loop- and Star-Tested EFIE

e Testing EFIE withaloopbasis O, :
1
<0O,;6(r,r),J(r)>+—< Vv-0,,6(r,r),v-J>
o <0,;G(r,r), J(r) Jm/f<)

= <Ou;Einc >= <Auﬁ;VXEinc > :_\]W<Au ﬁ;Hinc S

= |<0,;G(r,r),J(r)> =—<A,AH">u=12.V-B, |

(Weak form of magnetostaticintegral eq., i-H*[J°]=1 -lv x A[J°]=-A- H‘"°J
y7i
o Now expand the surface currentin terms of loops and star (or tree) bases :

V-B F-1 V-B F-1
J(r) =D 190, + jo ) P, (J(r’) ~> 10, + ijPn"eeA‘;eeJ
f=1

v=l v=1 n=1

Substitute into the EFIE and the boxed eq. above;test with star (or tree) bases %, yielding

[ls’]H[—<Au i H™ >]}

[P*] [ <k E™>]

-

[<0,;G,0,>] jo[ <0,;G % >]

jou[<*,;GO,>] F VK, GV Kk >—a <k, G,*p}
&

1
|:<Ou;472'_R’OV>:| 0 |:_< Au ﬁ, Hinc >]

[<*e; E" >}

&)

(or %, —>Ar:)

0 F v -*Q,L,V -*f>}
& 47R
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Note 7 TLow Frequency Breakdown of Integral and Helmholtz Equations

Summary of EFIE Low Frequency Treatment

¢ Split surface current J into a divergenceless and non - divergenceless part using loop and
star (or tree) bases, respectively.

¢ Equate the EFIE's surface curl and quasi - divergence parts by testing with loop and star
(or tree) bases, respectively.

e The separated parts require appropriate frequency scaling to reduce to static limits.

e The electrostatic limit approximates the integral equation — V®[q] =E™, with constraint
I qdS =0, by the matrix equation {<V -*m,ﬁ,v '*P}[Pn*} —<%_;E™ > where
E
(f)[q] is the electrostatic scalar potential in terms of surface charge g, expanded as a
superposition of charge dipoles to satisfy the constraint. Testing the equation with stars

(or tree) ensures no closed pathintegrals over the conservative electrostatic field are formed.

e The magneostatic limit approximates the integral equation —(1/ ) Ai-V x A[J] = fA- H™ with
constraint V-J =0, by the matrix equation | —<O, ;L,OV%[ 12 ] = [< A, D H™ >],Where

4zR
A[J] is the magnetostatic vector potential due to the surface current J expandedin

divergence - less loop bases to satisfy the constraint.

Further Considerations and Comments

K In practice, using tree rather than star basis and testing functions yields better \
conditioned systems.

e Recently, so-called Buffa- Christiansen bases, AXand Q> , have proved useful
as testing functions, improving both low frequency behavior and the discretization
of various operators. They are also especially useful in discretizing so - called
Calderon preconditioners. "BC" loop and star bases can also be defined. AllBC
andrelated bases are defined on the "barycentric mesh," and are a superposition

Kof the usual A functions defined on that mesh.

RWG div- and curl-
conforming bases

n n

BC div- and curl-conforming
bases are also quasi-div and
qguasi-curl conforming, rsp.




Note 7 TLow Frequency Breakdown of Integral and Helmholtz Equations

Helmholtz Decomposition of Electric Field

/E-field splitting - \

curl-free
. —
E=—joA— VO
divergenceless, curl-free,
magnetostatic electrostatic
0 *
— 0
e E + E

e Low frequency behavior :

q=V-(¢E*)= OQ) (real) = |E* =0() (real)

\ E°—25—- joAV-A=0 = |E° =O(w) (imaginary)/

Dual Loop- and Star-Tested Helmholtz Eq.

o Consider the vector Helmholtz equation,
Vx 1"V XxE— o 16,6, E =—joous,d,
¢ We expand the field in the following quasi - Helmholtz decomposition

curl-free non-curl free
V-B F-1
E(r)~ Y V%, +jod A0,
v=1 f=1
where in this case,
- Vxk, =0
- <k A> = j*V-AdD = I(AVV ‘A)dD = <A,,V-A>for A arbitrary,continuous

hence <*V;1?J> =<AV,€-J> =—Jo<A,,q>

- <AVxu'VxE>= <V><A;,u;1VxE>—95(Axy;1V -GdB, if A, E continuous

Substituting the E - field expansion into the Helmholtz eq. and testing with loops and stars yields

[ 68, <k,i%,>] [ jos,s, <*,;0 >] (V] { [<A,.q>] }
[ja),uogogr <Oe;*v>] [<V><Oe;,ur’1V><Of >— @& weye, <0,,0, >] [Afo] —ty[<O,;J >]

»—0

(o0, kx> (0] ”[vv*]] { [<A,.05] }

[0] [<Vx0,;1'Vx0, >] || [A?] ~14[<0,;3>]
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Note 7 TLow Frequency Breakdown of Integral and Helmholtz Equations

Dual Star Basis Representation

[ e We define adual star basis %, about an interior vertex v containing D° inits
support, supp >, , and with the i - thlocal vertex of D° corresponding to vertex v:

2 Qie—l Qi+1 F] e
*, =0, xfi=————==—1 reD°’csuppxk,
¢, l., h

i i+1 i

or more usefully,
|*V =-V¢&, reDf csuppx,

e Note Vxk =-VxV£&=0, i.e. %, iscurl-free.

e For an arbitrary, continuous vector A on D°, we have
- [vé-AdD= [(£V-A)dD-§ £A-AdB
De De 6De

where the contour integral vanishes when contributions from
all adjacent elements with a common vertex are added, so that

<k;A> =[x, AdD=[(AV-A)dD = <A, V-A>| /
D D

where A, =& ,r e D° < supp %, is the scalar rooftop function with peak at node v.
Hence, testing a continuous vector with a star function is equivalent to averaging its
rooftop - weighted divergence over the star's support.

Dual Loop Basis Representations

1

* * *

O, = E c.Q, onp=%1 or O'fn=i£—
n

n

\
where the sumis over edge DoFs for edges of face f (S") and the signs are
chosen so flux is parallel to edges of f and defined on adjacent elements.

e We note that only F -1 of the star bases are independent since

( A

30, =0.
n=1

e The curl of loop bases may be simply defined by

VxO, =Y opVxQ )
n

_~

\

The star and loop bases form a quasi - Helmholtz decomposition of E:

curl-free non-curl free

V-B E-1
E(N~ DV, +jo) A0,
f=1

v=1




Note 7 TLow Frequency Breakdown of Integral and Helmholtz Equations

Summary of Helmholtz Equation Low
Frequency Treatment

@ field E into a divergenceless and non-divergenceless part usingloop and \

star (or tree) bases, respectively.

Equate the Helmholtz equations curl and quasi - divergence parts by testing with loop and star
(or tree) bases, respectively. For simplicity, we illustrated only for the 2-D case.

¢ The separated parts require appropriate frequency scaling to reduce to static limits.

* The electrostatic limit approximates the PDE V -(¢E) =q with constraint
VxE =0 by the matrix equation [ £,z, <k,%,>|[V,* |=<A,;q>, where gis the volume charge

density. Star (or tree) testing the equation ensures no closed path integrals over the
conservative electrostatic field are formed.

e The magneostatic limit approximates the PDE  VxV x A =—uJwith

constraint V-A=0, by the matrix equation [<VxO,;4'VxO, >][ A’ |=[ 4 [<0,;J>]]where
whe magnetostatic vector potential expanded inloop bases to satisfy the constraint. /
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End of Note 7
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Note 8 Fast Methods

1) -
FastWethods

Donald R. Wilton
I\ﬁﬂw\lt Vikram Jandhyala

Why Are Fast Methods Needed for
Large MoM Problems?

Matrix Memory Requirements |

for Direct Solvers Memory =
N2x 16 bytes/

complex, double
/ word

1.E+06 +

1E+04 | /
1E-02 | L"

slope = 6decades — 9 — N2
1E-04 { / 3decades
1E-06 :

1.E+00 1.E+03 1.E+06 1.E+09

Memory in [GB]

Number of Unknowns
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Note 8 Fast Methods

Approximate Computation Times
for Large Problems

Computation Requirements of Direct Solver at

. 1GFLOPS
Time = N3/(3xFLOPS) LTELOPS
=— 1EH06
29 1E03]
Ei‘/ 1.E+00 - slope = 3qeoades =3 = o N Afpr;])rox. limit
= of human
o o 1582 | patience!
SIS £
SiE LEW < ‘

1 10 100 1000 10000 100000 100000
0

Number of Unknowns

Main Features of Fast Methods

« We assume solution uses an iterative, not\
a direct method

 Use redundant information in MoM matrix
and/or Green’s function to reduce storage
requirements (“compress” the matrix) and
speed up the solution process

N /
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Note 8 Fast Methods

lterative Methods

mstead of directly solving \
Ax =Db

by, e.g. Gaussian elimination, we iterate on an
equation of the form
X, =B X, ,+c,, n=12,---, B =B (A X, X, 5l ;)

where x, is aninitial guess, until we achieve
'n

f_—/;\
convergence, say [x,-x,.||<&,and/or||Ax, —b|<e,.

e Theprocess mustusually be spedup by
preconditioning the system,i.e.,premultiplying

by amatrix P and solving the modified system
\ PAX =Pb j

Iterating the Preconditioned System

e Thepreconditioner shouldin some sense \
approximate theinverse of the system
matrix, P~A™, or equivalently PA ~ |

e Whenthisis the case, we may view the
term (I-PA)in the identity _

x:(l -

~A1p X =Ix

"small"

as a"small" correction to the RHS, leading
to the simpleiterative procedure

\ Xn:(I—PA)Xn_l+Pb < x,=Bx_,+c, n:]_y
6




Note 8 Fast Methods

Iterative Convergence of the
Preconditioned System

KBeginning with x, =0, successiveiterations \
of the simpleiterative procedure yield

X,=0
X, =Pb [, =(1-PA)x,, +Pb |
x, =(I-PA)Pb +Pb

X, =(1-PA) Pb +(1-PA)Pb +Pb

n

>;n+1 — {;(I-PA)i}Pb

e Identifying (I-PA)=Rintheidentity, and noting
SR =(I-R) 7, [R[<1 (=D (1-PA) = (PA))
i=0

i=0 i=
we see that the solution converges to

x =(PA)'Pb=A"P'Pb=A%
if ||1-PA| <1. 7

Observations on the lterative Procedure

e Our simple procedure may not converge at all (i.e., if \
|I-PA[>1) thoughin principle, that is not the case with
more sophisticated iterative algorithms. Commonly
used algorithms include BiCGSTAB, GMRES, QMR, etc.

e Convergence is sped up if Pis close to A™.

e The main computational bottleneck is the repeated
calculation of the matrix /vector ("matvec") products
(I-PA)x,, . All fast methods attempt to speed up the
matrix / vector product ("matvec") computation.

e Modern iterative solvers require that the user implement

the matvec computations to allow use of the most
appropriate speedup method. /
8
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Note 8 Fast Methods

Matrix/Vector Products

ﬁ inner product between two vectors generates a scalar givenm
]

t vV,
<ULV > =0V =, Uy, Uy ]| = Uy UV, Uy
|V

The product requires approximately N operations.
e The outer product between two vectors generates a matrix given by

' R iy Matrix rank = number of
uv' = U, [Vl v, - VN]: Uz.Vl U,V, UZYN rows (columns) of largest
: Ve submatrix with non-vanishing
determinant
Uy | o /e (VX

Since allrows and columns are proportional, the matrix is only rank 1.
wproduct requires approximately MN operations.

Matrix/Vector Products with
Low Rank Matrices

e The sum of r outer products of independent vectors,

Zr:upv; = UV'where U=[u, u, - u ],\V'=[v, v, - v,]'=

is amatrix of rank r; conversely, suchmatrices can be so factorized.

e Thematrix / vector product Ab(=A,, b, )generally requires

MN multiplies, but the product

(Zr;upvtpjb =30, (1ib)=(vb)

requires only about r(N + M ) multiplies when performed using the

Storage of A: MN
Storageofu_,v : r(M+N)

RHS grouping. If r<<min(M,N), = significant speedup.
e Butr<M,N = Zu Is singular; henceit must be that only

subblocks of A not the entire system matrix, can berepresentedin
this form. Such matrices are said to be rank deficient. 10
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Note 8 Fast Methods

Obtaining Low Rank Matrices

ﬁ:ast methods approximate off-diagonal blocks of the \
system matrix as low rank matrices that can berepresented
inproduct form, UV'. Such blocks typically represent

far interactions between closely grouped observation
and source element clusters.

e There are two approaches to obtaining reduced rank blocks::

1) Represent the Green's functionin separable or degenerate
form over theblock's observer and source domains.

2) Use matrix algebraic methods to directly find reduced-rank
\ block representations

Matrix-Vector Product for Sums of
Separable Matrices

» Separable kernels lead to separable matrix blocks:

E.g., for simple integral eq. jG(r,r’) x(rYdD = f(r), reD
with kernel expansion G(r, r';) iu (r)v,(r"), r,r'esubregionof D
and basis representation x(r) = Zx L(r)=1[b (r)] [x,]

contributions to a block of the Galerkin system matrix are

UV 'x,
where
U = [<bm’up>:|Mxr X:[X]
V = 5w N INx1
- |:< n’ = p >]er

Matrix-Vector UV‘XE{Zupvp‘}Xﬁul U2~--Ur][V1V2"'Vr]tX
Product for =
Separable e r(M +N)operations if performed right - to -left
Matrix:

e MN (r+1) operationsif performed left -to-right
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Approach Generalizes to More
Complex Operators

* A block of an EFIE matrix becomes

Zyow = Joud [<Ayu, >l <ALV, ST

p=1

—— > [<V AUy >l [< VALV ST
Joe 75

+

= jouU-V' JF_LU'V't
Jog
where

U:[</\m’up >]Mxr’ V :[<Anlvp >]N><r
U=[<V-A, U, >y, V' =[<KV-ALv, >,

13

Fast Methods Often Combine Separable Matrix
Approximation with Hierarchical Methods

» Separable matrices reduce both storage and matrix
vector multiplication counts from MN to r(M +N)

» Unfortunately it is not possible to approximate the entire
system matrix by a separable matrix---it will be rank
deficient and hence have no inverse (i.e., no solution)

* Nevertheless, nearly all fast methods in computational
electromagnetics are based on approximating blocks of
the system matrix by separable matrices

* For additional speed, some hierarchical scheme must be
used to transfer information at one discretization level to
another

14
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Central Fast Method Ideas

a Fast methods all employ a form of matrix or N
Green’s function rank-reduced separability

* Multi-level schemes gain additional efficiency

_ by a hierarchical grouping scheme. )
~ Information used at a lower level
Q A
/ can be reused at a higher level
Level 1 / 3 i )
/ / \q ) ﬁ Far-field matrix blocks
/ & ‘.\Y Jevel 2
/ " \\\ \
: \ 7 = R level 3
B lev
Level 2 N y \ & AN Mear-fiek rn:::; hlocks
N ) \ =
Level 3 Pl

15

Ability to Group Scales with Distance Until
Wavelength Scale Enters

 Most methods apply in the quasi-static region, but performance
begins to degrade when block sizes reach the wavelength scale.

« MLFMA, however scales beyond the wavelength limit.

16
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Examples of Separable

Expansions of Green’s Function

(Taylor Series (elegant but difficult to apply):

\

p=0 q=0 plql

[G(nr%iii (r-r)- VI [(r-r)-v]G(rr)

r=r ,r’_rs]

* Products of terms like (r—ro)p(f'—rs )q’

functions, e.g. quasi-statics

 Dynamic case limited by wavelength

"

where r,, r,

are centered in an obs. & source group, rsp.

 Works best for asymptotically smooth Green’s

./

Separable Expansions of Green’s Fn, Cont’'d

Polynomial Interpolation: \
Cpq -

G(r,r') ~ ZZé(r(p),r’(‘”i L, (r)Ly(r"),
p=(p,. P, P,). 4=(0,,9,.9,)

 More accuracy simply implies using
high order interpolation

 Wavelength limited

» Hierarchical principle: Lagrange
polynomials L(r)=L,(x)L, (y)L,(2)
at low levels (coarse discretization)

are represented in terms of those
at higher levels (fine discretization)/,

18
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Separable Expansions of Green’s Fn, Cont’'d

Store only the

n ] first column
3x3 zero

"N
}3

CGFFT, AIM, Pre-Corrected FFT:

} padding
/Z<Am,G(r—r),An>ln, = \ @00 0C0OO0Cee®
n Z |’ [ X NOIN NONOXOX )
precompute [Zn s ][] 00000000
extended to C0e000000
Z<A L >G'q<Lq’A”>I“§,\>,| circulant form OJOX N X JOX X©)
00000006
-k _ > ! _ v _jm'kp jn‘kp A. O O O . . . O
ZZe _DFT(Zp):Zm_n_Zp:Zpe e 000 0o
1st col. .
QZ/ / {Z m"nLszp
~ ~ ~ 27p, . 27 py . 27P, . For efficient FFT, the
m=(m X+ my+ m,z), kp = N =X+ N + N : augmentedarray Z,
X y z shouldbe dim 2" x 2”

o Separability follows from DFT representation; FFT
automatically provides hierarchical scheme

e Green’s function must be convolutional
» Requires space-filling, regular grid 9

Separable Expansions of Green’s Fn, Cont’d

FMM, MLEMA:
G(r,r)~Jp " "T(k-R, )" dk?

=3 et Tk R, )M sing, A6 Ag
a

Translation operator :

Tk Ry)=[T,e ], ZZZ ) 0+D)P, (kp Ry, )

 Hierarchy provided by successive translation between (multi)-levels
with interpolation ([Ipq}r ) and anterpolation ([Ipq]l_1 ) of translation
operator: N

«increasinglevels, decreasing interpolation density

PSP N O A P
[T L[ e Ton L[ Ve L [T Lo
ceex : | o ] - [qu ] o [ | o ] 1 [qu } -1,

increasing levels, decreasing interpolation density—

[Ipql,_l =k - space interpolation operator at level | 20
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Examples of Direct (“Kernel-Free”) Methods

SVD:

e Singular value decomposition can be used to
directly obtain

A ~UZV'
where
V=[v,V,,....v,]
U=[u, U,,..., u,]

2 =diag(o,,0,,...,0,) are the singular values

« Method needs all of the original matrix block A and
Kis inefficient /

21

Direct Methods, Cont’'d

ﬁA: \
« Adaptive Cross Approximation builds a block b

y
adding products u,,v,,, that are essentially rows

and columns of the residual matrix, rsp.:

A~UV/ _
1
where
U, =[uy, Uy, U] .
V, =[ViV,eV, ]

* Simple to apply
* Only necessary to compute rows and cols of A

needed to form u,_,V,
vppears to work best for statics, moderate freqs./

99




Note 8 Fast Methods

ACA Method, Cont'd

ACA Algorithm: (S.Kurz,0. Rain, and S. Rjasanow, “The Adaptive Cross-Approximation
Technique for the 3-D Boundary-Element Method” IEEE TRANS. MAG., 38, MAR. 2002.

‘.
ﬁ {{3“: '11‘)""" = f::f.'.l f1 A - Z(T‘”:-"k+ ! "!"‘.fr \ / 0 \
=1 .

2,} k41t |{.Ri‘)fa—-i‘,"; +1 | = nax |[ijfa-‘1.J| .
_ . Y g =|1|<«ith row
3) Vg4 = LS HL.H By )iy, 13 dk+1
& :
4) upy = Aej ., — Z(‘-"I:'j.‘, 2 0
=1 \ - - /
5) kg2t |(Un1)ig | = A (wreq1)i
6) Sui1 = Syt Urp1Pers J
Stopping criterion:  [[ux||#|lvr|lr < &[Skl e
with recursive norm computation,
f—1
1S&llF = 1Sk—alF +2 > (uj, we) (vjs vr) + [l llogllF ’s
1=l
Direct Methods, Cont’d
MLMDA
e Multilevel Matrix Decomposition Algorithm
(Michielssen, Boag)

/

» Uses equivalence
principle and far-
field DoF concepts
for heirarchical

representation
N /

¢ N™ ghservation points
{reduced ser)

radius 4@

i

0 ."lr“fmi.g_i.llﬂ.i IM
# N’ equivalent SOLIMDES ® N™ cquivalen sources
SOLCES (reduced set)

L]
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Direct Methods, Cont’'d

@k-Revealing QR Decomposition \

« Columns of block are taken as bases for
representing matrix through modified Gram-
Schmidt orthogonalization to produce Q;
R=Q!A (since QQ!=1 implies A=QR)

* In principle, a low frequency method, but
has been successfully applied to objects

about 20 wavelengths in size

» Very efficient when combined with PILOT
algorithm (Jandhyala)

25

Problem Domains Are Generally Partitioned
to Find Compressible Matrix Blocks

Bounding Box- Level 0 . . . .
g » Object bounding box is recursively

subdivided into cells to form quad-tree

(2D) or oct-tree (3D)
I * No information stored for empty cells
(panels)
‘ * Roughly equal number of DoFs per cell
- — gnly eq P
* Interactions between elements are now
I between groups of elements in different
cells
Root T Level O
Nodes < Cells < Panel Cluster l 1 Level 1 1 Siblings 1 Parent

e ryyYuryFyyaiyyys

often described using Twigs
either botanical and/or 26
genetic terminology! Leaves
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Definitions of Sibling, Nearest Neighbor

Shell, and Interaction Shell Sets
S, - Sibling Set :

Define:
_ {+1 _
C!-ith cell at th level Seps —{Ck VK| Fopa = P
, = set of cells with
P, -parent cell of cell C the same parent
K., -Nearest Neighbor Shell : Interaction Shell 1|,
i / i

C

C;|C;isinthe samelevel as C{ and has
at least one point of contact with C/'

. . Ci/
(C[ Interaction Shell : \

4 ey
I, :{cj IR €K, iCieK,,

=set of cells C; at the samelevel as C/

whose parents areinthenearest neighbor
shell of C/'s parent, but are not anearest Nearest Neighbor

\\ neighbor cell of C/ / Shell K, 27

Begin at the Deepest Level and Fill System Matrix with
Interactions between Elements in each Cell and Those of its
Near Neighbors

Level 4
ﬁnd interactions between elements in \\

each cell and elements in its near
neighbor cells:

- Self-blocks and nearest neighbor shell
blocks are filled by usual MoM procedure

- Interaction shell blocks are compressible,
so fill using ACA, QR, SVD, FMM, etc.

Qeat all siblings as a group /

Nearpst neighbor Interaction
blocKs shell (compressible)
blocks 28
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Successively Move to Higher Levels (Larger Cell Sizes) and Fill
(Compressed) Blocks Representing Coupling Between Elements
in a Cell and Those of Same Level in its Interaction Shell

ming up alevel, we next conside\
cells that are parents of the cells at

the previous level

Level 3

*Note that the nearest neighbor
interactions at this level were
treated at the previous level

*Hence, find interactions between
each cell at this level and the cells
of its interaction shell; the resulting
interaction blocks are all
compressible

*Repeat this procedure at each
Klevel until we reach level 2 J

The Filling Procedure is Finished When

Level 2 Is Reached

Level 2

sLevel 1 has no nearest neighbor or interaction shells

sLevel 2 has only previously-filled nearest neighbors

30
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Note That We Tile All Interaction Domains
Using Blocks of Ever-Increasing Size

* As levels are added, all
interaction groups are
“tiled” by the increasingly
larger groups

* Maximum rank pattern
remains same at each
level up to scales of
almost a wavelength

* FMM or similar algorithms
can be used beginning at
scale levels on the order
of a wavelength or larger

The PILOT algorithm attempts to further compress the system matrix 31
by combining neighboring groups of cells at each stage

Predetermined Interaction List Oct-Tree
(PILOT) Algorithm for Domain
Decomposition

« Attempt to group cell 1

Interaction shell m— with its siblings before
) interacting it with non-
stencil at leaf level )
Rank 6 adjacent cell groups

« Complete grouping
1 pattern by rotational

g

symmetry

Rank 6 | Cells 2,3 are adjacent to
10,11,12, so select a

g

- - smaller sibling group
|rrrwrassss]
T = « Group so rotations
E [ Rank 7 produce only a single
interaction between
= group pairs

* Only a single cell-to-cell

B ===

g 1 1

Rank 5 interaction remains
between non-adjacent
cells in the interaction
shell

5]
Full « Near field interactions
[ y |1 Rank

32
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Typical Matrix Block Decomposition

s ﬁ%\ﬁ \'\ Far-field matrix blocks
1\&&.\ N lewel 2
N N

level 3

B level 4
‘\h‘ Near-field marix blocks
NN .
NN

33
PILOT Performance: Cone Problem
2
N: o
£
2 -2 x  PILOT
2 —— LU solver
= -4 o Regular terative
Q U_DE B 2 _ - Ll P
yais 015 gz g1 O xass o Polar Angle (8) in Degrees
. 100 -50 0 50 100
Figure 6a: Conducting cone . _ )
and incident plane wave. Figure 6b: The bi-static E-plane RCS
34

105




Note 8 Fast Methods

PILOT Performance: Cone Problem

12 =
L - PILOT L —a— PILOT
—#— Regular lterative and LU |~ w =—w— Regular lterative and LU
o 1
g 10 E 2.
= 10k
@ 193]
10| s
= 10 E
403
é 10° 5
8
10° - Number of Unknowns i Number of Unknowns
10° 10* 10° 10° w0’ 10° 10° 10°
Figure 7a: Memory Requirement Figure 7b: Matrix Setup Time
A0t : o
= 0 —Fror g 0 = pioT ]
Q == Regular lterative Solver s —w— Regular lierative ;"‘
g = . g | == Regular LU r
@10 4 @10 g
= A
E 3 N
= o10% ; + 10° o
i=} Ll
g i}
- 1_ ] 4
g 210
B =
= .0 . Number of Unknowns gmz g Number of Unknowns
— 10 = ] 5 & 3 2 5 5
10 10 10 10 = 10 10 10 10
Figure 7e: Matrix Vector Product Time Figure 7d: Total Time Requured

PILOT Performance : Drone Problem

x  PILOT
0 —
© Regular Iterative | _cesg

) Folar Angle in Degrees(®),
100 150 200 250

y-axis 2 r*“" s HX-axis

Figure 8a: Surface mesh for airborne drone Figure 8b: The bi-static RCS of the drone

Figure 9a: The current density with LU Figure 9b: The current density with PILOT 36
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PILOT Performance vs. Frequency

3800
—— Full-wave Kernel 3400 —— Full-wave Kemel
ag00l L Quasi-Static Kernel 3200¢ — Quasi-static Kemnel
= e 30003
3400r= =
= 2800¢ g,
3200 € 2600r £
1w
= 2400t =
3000F
2200r . : . 1
Max. dimension as a mul[|p|e of waue|engm Max. dimension as a muﬂip[& of .'.‘ah'elengm
2800 -2 I—1 I (i] : g 2 20[}0 -2 .-l : o 1
10 10 10 10 10 10 10 10 10
Figure 10a: Memory required by PILOT Figure 10b: Memory required by PILOT
for a 2D structure. The corresponding MoM for a 3D structure. The corresponding
memory requirement 1s 540 GB. MoM memory requrement is 150 GB.

Results can be improved by switching to an FMM or similar scheme
when block sizes are on the order of a wavelength or larger.

37

End of Note 8

38
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Chapter 1.5.5

COMPUTATIONAL METHODS
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Numerical techniques are becoming increasingly im-
portant in determining electromagnetic scattering
properties. In this chapter we emphasise frequency
domain methods because they have such wide
applicability. Both integral and partial differential
equation formulations are treated, as are hybrid ap-
proaches that combine features of each. The follow-
ing section summarises fundamental concepts; two
sections illustrating the formulation of simple integral
and partial differential equations appear next. These
are but special cases of linear operator equations, and
this abstract point of view is taken in the next sec-
tion where general methods for their discretisation are
considered. Also the variational point of view com-
monly used in the finite element approach is intro-
duced, and its equivalence to the method of moments
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approach of Harrington (1993) is demonstrated. The
resulting unification allows us to borrow freely from
the most useful concepts and terminology of each
approach. The succeeding sections concentrate on
formulations that summarise the discretisation of
two- and three-dimensional operators that commonly
appear in computational electromagnetics. The re-
maining sections summarise extensions to the tech-
niques introduced, consider associated computational
issues and summarise alternative approaches.

§1.

Maxwell’s Equations

Fundamental Concepts

If the electromagnetic fields are assumed to be time
harmonic with an ¢/®* time variation, Faraday’s and
Ampere’s laws become

VxE=—jop-H-My, (1)
VxH=jwe-E+]y, (2)

respectively, where E and H are the electric and mag-
netic fields, and Jp and My are electric and magnetic
volume current densities, respectively. Here we as-
sume that the permittivity € = €,€p and permeabil-
ity i = o are dyadic functions of position so that
the medium parameters may be both inhomogeneous
and anisotropic. The permittivity of free space is
€0 ~ 8.85419 x 10712 and permeability of free space
is o = 4w x 1077, The electric and magnetic forms of
Gauss’s laws are

V-D=gy {3)
V.B=my, (4)

where gy and my are electric and magnetic volume
charge densities, respectively. The electric and mag-
netic currents are related to the corresponding charge
quantities by the equations of continuity,

V.Jp =—-jwgp (5)
V.-Mp = —jomp, (6)

where D =C, S,V are line, surface and volume current
or charge densities, respectively, and the appropriate
dimensionality of the divergence is assumed.

Vector Wave Equation

Taking the divergence of both sides of {1} and (2) and
employing the identity V-(V x A) = 0, we find that,
together with the equations of continuity, (1) and (2)
automatically incorporate Gauss’s laws, {3) and (4),
if  #0. Eliminating H or E from (1) and (2) yields
the vector wave equations

v x (,L;l LV x E) —kle,-E = —jouJy -V x (p.,_l -Mv) (7)

or

V x (e;l Vx H) — k2, H = —joegMy +V x (e,_l -Jv) (8)

for electric or magnetic fields, respectively.

Potential Representations

The electric and magnetic fields can be represented in
terms of potentials as

E - _joA—VO— LVxE,
€
1

H-—joF - V¥+-VxA, (9)
u

where, in homogeneous, isotropic media, the poten-
tials

A=u| Jolt)Ger,r)dD, (10)

F:ejDMmr')G(r,r')dD’, (11)

cb:lj gt )Glr, ¢)dD, (12)
€D

wzlj mp(r')Glr, ' )dD/ (13)
“ip

are the magnetic and electric vector potentials and the
scalar electric and magnetic potentials, respectively.
The domain D may be a volume P, a surface S, or
a curve C. In a medium with wavenumber k = ©/z€,
the three-dimensional scalar Green’s function G(r, ')
is the potential function

c . e—ij
I,r)=

()= 4=
where R = |r —r'| is the distance between a unit
strength point source located at r' and an observa-
tion point at r = xX +yy +zz. If the problem domain,
sources and fields are invariant with respect to the z
coordinate, the problem is two-dimensional and the
potential integrals can be written as

JD(~)G(r, ¥)dD = va J:o(-)G(r, v)d7 dD;

(14)

- | 1Gt,01dDy, (15)
where integrals over D =V or S become integrals over
the domain’s cross section in the x—y plane, D, = S or
C, respectively. The identity
(2) —ikR

. Hy (kD) o 7T ,

Glp,p') = _41— = J_oo Wdz

=r° Gr,v')d? (16)
permits replacement of the three-dimensional, homo-
geneous medium Green’s function G(r,r') by its two-
dimensional counterpart, G(p, p’). In (16), D = |p—p/|
is the distance in the x-y plane between a unit line
source located at p’ and an observation point at p =

XX + vy, and H(()z)(x) is the Hankel function of the
second kind, order zero.
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Far Fields, Radiation Conditions and Radar Cross
Sections

In three dimensions, the vector potentials in the far
field become

ACY Le"””f Ip(c') ek dDf (17)
4nr D
and
P2 S —f’“J Mp(r') e 4y, (18)
4mr
where
£ =%RcosdhsinB+§sin¢sind+zcoso (19)

is the radial unit vector in the observation direction
(8, 9) in spherical coordinates. In terms of potentials,
the far electric and magnetic fields are

= j®F x (I x A) +jon(t x F)
=_7w<66+$&>).A+;‘m(&>6—6$).F, (20)
and
1. —j®
H=-rxE = txA)+jofx (fxF
a n ——(Ex A)+jor x(r xF)
C fan 4 O fns  an
=—;m<96+¢¢)-F+;ﬁ<6¢—¢9)-A (21)
respectively, where
0 = XxcoshcosO+§sinpcosd—7sind (22}
&):—f(sin(b+§7cos¢, (23)

and M = y/u/e is the intrinsic impedance of the
medium. Note that the fields satisfy vector radiation
conditions

lim 7 [fo+ E] =0, limr[fxE—mH]=0 (24)
r—oo n r—o0

that are needed to obtain unique solutions of (7) and
(8) in unbounded regions. The Green’s function ap-
pearing in the potential field representations satisfies
the scalar radiation condition lim,_, r[%cr— + jkG] =0,
which in turn ensures that fields obtained from poten-
tials automatically satisfy radiation conditions.

If E and H represent fields scattered by an object
illuminated by an incident plane wave E™ travelling
in the direction of the unit vector 1A<, the bistatic radar
cross section in the observation direction T is
IEJ*

o(t, k) = lim 4nr? il

(25)

This cross section is defined as the area through which
an incident plane wave carries sufficient power to pro-
duce, by omnidirectional radiation, the same scat-
tered power density as that observed in a given far
field direction. The monostatic radar cross section
is defined as the radar cross section observed in the
backscattering direction, o(—k, k). Another quantity
of interest is the total scattering cross section,

~ Re[pE"C-JHdD
() = ““fE—lzJ (26)
where the asterisk denotes the complex conjugate.
This cross section is defined as the ratio of the total
scattered power to the power density of the incident
wave.

In two dimensions, the far vector potentials have
the form

iy \/8‘; = e-f<’<9+’z‘>J Tolp)e® P dD,,  (27)
S \/Zs;Tp eilko+3) JDZ Mo (p)e PP dDy, (28)
and the fields are given by
=jopx (pxA)+jon(pxF)
=-/m(.§>&> zz) A+jwn(i<i>—<i>i>~F, (29)
and
H:%ﬁxE = %’(ﬁxA)ﬁmﬁx(ﬁxF)
- _,m(&ninii) ~F+/% <<i>i—i(i)) A, (30)
where
p=bxz = Xcosd+§sing (31)

is the radial unit vector in cylindrical coordinates in
the direction of the observation angle ¢ measured
from the x axis. The radiation conditions are

Jim \/p [fo+§] =0, lim \/p[ExE~nH] =0.(32)

In two dimensions, the bistatic radar cross section
for scattering by a cylindrical object illuminated by an

incident plane wave E™ travelling in the direction of

the unit vector k normal to the cylinder axis is
IE[*

[Emclz '

o(p,k) = lim 2mp (33)

p“)OO
This cross section is the equivalent width across which
an incident plane wave carries sufficient power to pro-
duce, by omnidirectional radiation, the same scat-
tered power density as that observed in a given far
field direction. The monostatic radar cross section is
o(=k, k). The total scattering cross section is

- _MRe[p E™-J5dD,
[Emc[l >

O (34)
defined for cylinders as the ratio of the total scattered
power per unit length to the power density of the in-
cident wave.

Equivalent Current Representations

The surface equivalence principle is usually used to
formulate an integral equation at a surface S sepa-
rating two regions. A Green’s function must usually
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be known for at least one of the regions, or at least
for the region formed by appropriately extending the
region’s material parameters into the complementary
region. Surface S might be chosen arbitrarily or for
some convenient property it possesses—often it is the
boundary of a scatterer or of a homogeneous material
region. We assume that S is closed, of bounded ex-
tent, and has an outward unit normal A. The region
interior to S is designated V™, while the exterior re-
gion is V*. Let (E*,H") be fields in V*; we need only
know their tangential values on S and their sources
J5 in V*. We place so-called equivalent electric and
magnetic surface currents,

Je=nxH*, Mt=E'xn, (35)
respectively, on S. The equivalence principle (Harri-
ngton, 1961) then asserts that the fields radiated by the
equivalent surface currents J§, M on S and the sour-
ces J3 in V* are the original fields (E*,H*) throughout
V*. Further, the fields radiated by the equivalent and
exterior region sources together vanish in V~. This
exterior equivalence is illustrated in Fig. 1a.

An interior equivalence dual to the exterior equiv-
alence may also be set up. We consider a second set
of fields (E=,H™), possibly unrelated to the first, for
which we need only know the tangential values on S

Figure 1 Equivalent currents for (a) exterior region and (b)
interior region.

[E,H] = [E*,H*] 95
. w f
............. ——
............ J;
Va \
S ...................... [E,H] = [0,0]
(a)
[E,H] = [0,0]
V+ Ms f
............... ‘«\_

and its sources ] in V™. Equivalent electric and mag-
netic surface currents,
Js=—AxH", Mg = -E x4, (36)
respectively, are placed on S. The equivalent surface
currents Jg, Mg on S and the interior sources Jp in V™
then produce the original fields (E~,H™) everywhere
in V75 together the sources produce null fields in V*.
The interior equivalence is illustrated in Fig. 1b.
Since in both equivalences the fields vanish in the
region complementary to that for which the equiva-
lence is valid, the medium parameters may be changed
in the complementary region as convenient. Often the
equivalence region medium parameters are suitably
extended into the null field region such that a Green’s
function exists for the resulting composite medium.

Field Discontinuities at Surface Sources

Integral equations are generally obtained by apply-
ing boundary conditions at material interfaces where
equivalent surface currents are used for field represen-
tations. In formulating the equations, one must pay
particular attention to discontinuities of the surface
fields at boundaries. In potential integral represen-
tations, these discontinuities arise from terms involv-
ing derivatives of Green’s functions that behave like
three-dimensional Dirac delta distributions, 8(r —r'),
as an observation point r approaches a source pointr'.
The integrand sampling properties of the Dirac delta
distributions thus allow terms involving the source at
the observation point to be explicitly removed from
the integral. Thus, if E and H are the fields radiated
by surface equivalent sources Js and Mg on a surface
S, then the fields have the following limits as a point
r approaches a smooth point on S:

. L M(r) L gslr) . 1
rli?}gE_:tnx 3 +h e —7(0A—<V<I))—E(V><F)
T el oo
rlinTréH—QJnx 5 +1ii 5 joF (V‘P>+’u(VxA),(37)

where “|” indicates the surface is approached from
the side into which the surface normal fi points, and
“1” indicates the surface is approached from the op-
posite side. The potential derivative quantities en-
closed in brackets in (37) are discontinuous at S, the
brackets signifying the average value of a discontinu-
ous quantity as S is approached from opposite sides.
It is seen that the source terms appearing outside the
potential integrals completely account for the well-
known discontinuities in fields (potential derivatives)
at surface sources:

limE—limE = A x Mg +A %
S s €

limH-lmH = A x Jo+87°.

rlS s (38)

The bracketed potential integrals may be written
as
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(VxA) = ,uJS (') x VGIr, r')dS (39)
(VxF)-—eL (F)x VG(r,¢)dS (40)
<v<1>)=—i JSV' Is()VGlz, ¢ )dS’ (41)
<w>—-m—”J V. MJ(C)VG(r,r)dS,  (42)

but one must keep in mind that they no longer include
singular contributions of the potential integrals from
the source point ' = r on the surface. Thus the in-
tegrals represent contributions from all points of S,
excluding the isolated point r.

§2. Conducting Cylinders: EFIE, TM
Polarisation

In this section we introduce a simple two-dimensional
scattering problem formulated as an integral equa-
tion, and solved by a numerical solution procedure
known as the method of moments (MoM) (Harring-
ton, 1993). We consider a conducting cylinder of in-
finite extent with its axis parallel to the z axis. The
cross section of the cylinder is described by the curve
C. If an electric field with only a z component E
is incident normal to the cylinder axis, then the in-
duced surface current and scattered fields also have
only z components, [, and Ezc, respectively. Since
the resulting magnetic field is directed transverse to
the cylinder axis, this polarisation is termed the trans-
verse magnetic {TM) polarisation. For an open curve
C, the conductor is generally modelled as having only
infinitesimal thickness. Though independent surface
currents exist on opposite sides of the conductor, they
become coincident in this model, and hence we can
take J, as the sum of the surface currents on opposite
sides of C. In view of the problem’s translational sym-
metry with respect to the z axis, the fields and induced
currents are independent of the z coordinate. This im-
plies that there is no charge density associated with
the current and that the scattered electric field may be
represented in terms of a vector potential alone. Thus,
combining (9), (10) and (16), we have

ES = —jw s = —jou| J(o1Glp, o) dC’

- ——j T HP (kD)dC, (43)

where D = [p—p/|.

An integral equation for determining the induced
current is obtained by requiring the total tangential
electric field, E5° + EJ*, to vanish on the cylinder sur-

face:
%[ s

For a numerical solution of (44}, known as an elec-
tric field integral equation (EFIE), we first approxi-

J(kD)dC' =E™(p), peC. (44)

mate the curve C by means of N straight line
segments, C", as illustrated for the hemicylindrical
geometry with fin whose cross section is shown in
Fig. 2. The line segments are also called elements or
subdomams, and provide a piecewise linear approxi-
mation € = UY 1C" to C. As the figure depicts, curved
structures incur geometry modelling errors in this ap-
proach. These errors can only be reduced by decreas-
ing the segment lengths, i.e., by increasing the number
of segments N. Note that the integral equation (44)
applies even when there is a junction between conduct-
ing surfaces, as the junction between the hemicylinder
and fin shown in the figure. Furthermore, (44) is not
limited to single scatterers, but also applies to multi-
ple, disjoint scatterers so long as the geometry remains
cylindrical and the excitation is z invariant.

The geometry of Fig. 2 also serves to illustrate the
geometry data structure required for a typical prob-
lem. Tables 1 and 2, for instance, tabulate the node

Figure 2 Piecewise linear model of cross section C of hemi-
cylinder with fin.

Table 1 Global Nodes and Coordinates

Global Coordinates
node number
X y
1 1.0000 0.0000
2 0.7071 0.7071
3 0.0000 1.0000
4 -0.7071 0.7071
5 -1.0000 0.0000
6 0.0000 1.5000
7 0.0000 2.0000

Table 2 Element and Node Associations

Element Global node numbers
number
Local node 1 Local node 2

1 1 2

2 2 3

3 3 4

4 4 5

5 3 6

6 6 7

112



Computational Methods 321

locations and list the nodes that make up each element
of the geometry, respectively.

To approximate the current distribution, we as-
sume that every subdomain C” is sufficiently small,
both electrically (k¢" << 1, where &” is the subdo-
main length) and with respect to any geometrically
distinct features of C, that the current density within
an element may be assumed constant, J, ~ I,. This
piecewise constant approximation of the current dis-
tribution is depicted in Fig. 3. The current distribu-
tion on C is thus approximated as

N
Jp)~ 3 InIla(p), (45)
n=1
where IT,(p) is the unit pulse function defined as
1, pec”,
I.(p) = 46
(p) {0, g Cn (46)

and illustrated in Fig. 4.

We substitute this representation for the current
into the left-hand side of the integral equation (44),
noting that, since the current is approximate, it is not
possible to satisfy the equality there at every point
of €. To obtain N equations in the N unknowns I,,,
therefore, we elect to enforce the equality at the mid-
point of element #. That is, we set p = p” on both
sides of (44), where p™ = (pT' +p5')/2 is the midpoint
of element m

N .
2 In(?TllJ Hg)(kDm)dC, - Elan(p"I),
n=1 ¢

m=1,2,...,N, (47)

with D™ = |p” — p'|. Note that the pulse function
property (46) limits the domain of the integral in (47).

Figure 3 Piecewise constant approximation of Jz on C.

Piecewise
constant
A~ approximation

eee 7 eee

Figure 4 Unit pulse function on C.

T1p]

This system of linear equations can also be conve-
niently written in matrix form as

[Zmn][ln] = [Vm]’

where [I,,] is a column vector containing the unknown
current coefficients, and [Z,] is the impedance ma-
trix with elements

(48)

Zom = f"_”J HZ (kD™)dC. (49)
4 Jer

The excitation column vector [V,,] on the right-hand

side of (48) is termed the voltage vector, and its ele-

ments are sampled values of the incident field,

Vin = E7(p™). (50)

The solution of the matrix equation (48) yields the
current column vector [I,,], and (45) provides a global
representation of the current distribution.

Evaluation of Impedance Matrix Entries

Further processing is required to accurately evaluate
the elements Z,,,, of (49). First, we must parameterise
each of the line segments C” for numerical integration.
Referring to Table 2, let the coordinate vector to the
first node associated with element 7 be denoted p7,
and the second, pj.

Then, as illustrated in Fig. 5, if € is arc length mea-
sured from node 1, the position vector p in C” may be
parameterised as

n_n
p=p;+22Plg (51)
where " = |p} — p]| is the segment length. To express
this result in a convenient general form, we define nor-
malised coordinates & = 1—8/8" and &, = €/¢", which
allow (51) to be replaced by

p=p781+p252 (52)

in C*. The normalised coordinate terms in (52) are
merely linear interpolation functions on the interval
(0,1), as shown in Fig. 6. In effect, every line segment
element of C is mapped onto this unit parent line seg-
ment.

Figure 5 Parameterisation of line segment C".
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Figure 6 Normalised coordinates on a line segment and piece-
wise linear interpolation functions.

1.0 & &4
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An integral on C" may now be parameterised and
approximated as

1
| firde = e"j F7E1 +pE2)dE, = Tor 2

~O" Zwkf (53)

1 +Pz§2 >
where the last line assumes a numerical quadrature
rule on the interval (0,1) with weights w}, and sample
points ﬁ(lk) =1 —i(zk), k=1,2,...,K. If f(p) is smooth
on C”, Gauss-Legendre rules are well suited to this
task. Sampling points and corresponding weights for
K =1,2, and 4 point Gauss-Legendre quadrature are
listed in Table 3.

For m #n, the integrals (49) in the impedance ma-
trix have smooth integrands and may be evaluated
straightforwardly using the Gauss-Legendre rules of
Table 3. For these impedance matrix elements,

0)}10" K

@), k)
Zn=—7 k2=1WkHO (kD}'), min, (34)
where, using (52),
k m nelk k
D' = o™ —pey" - 938, | (55)

For m = n, the integrand in (49) is singular at
the observation point p”, i.e., for small arguments

D, H(()2> (kD) ~ 1 —-/nln(kD) and thus the integrand

Table 3 Sample Points and Weighting Coefficients for K-Point
Gauss-Legendre Quadrature

Sample points, (1 ! Weights, w
K=1

0.500000000000000 1.000000000000000
K=2

0.211324865405187 0.500000000000000

0.788675134594813 0.500000000000000
K=4 »

0.069431844202974 0.173927422568727

0.330009478207572 0.326072577431273

0.669990521792428 0.326072577431273

0.930568155797027 0.173927422568727

is logarithmically singular at D = 0. The Gauss—
Legendre quadrature scheme is poorly suited for this
case; to handle it, we first note that the observation
point divides the line segment in half. Each half con-
tributes equally to the integral so that we may write
these so-called self-terms of the impedance matrix as

_oud” 1 ko™Eq
Zonm = 25 L)HO ( ;.

This integral may be handled by the quadrature
scheme of Ma et al. (1996) that exactly evaluates
integrals of the form [} f(€)dE, when f(§) is a linear
combination of powers of & and products of powers

of & and In&. Thus,
>, (57)

(x),uém H 0”‘&
B (15
where now the weights w}, and sample points ﬁ(lk) are
taken from Table 4.

(56)

Evaluation of Voltage Excitation Vector for Incident
Plane Waves

For a plane wave incident from an angle ¢'"® with re-
spect to the x axis,

EC = Ege k™ P, (58)
where the unit incidence vector is
K" = —%cos¢™ — §sin 6™ (59)

Table 4 Sample Points and Weighting Coefficients for K-Point

Quadratures of Form [ f(&1) d&y ~ XK | wy f(igk)) where f(§1) has
a Logarithmic Singularity at & =0

Sample points, &ﬁk) . Weights, Wi.
K=1 T
0.3676879441171442 1.00600poooéeoooof :
K=2 : o ‘
0.882968651376531 x 10~ 0. 298499893705525'
0.675186490909887 0.7015001 06294475»
K=3 :
0.288116625309523 x 10~ 0.103330707964930
0.304063729612140 f ‘04546365259701005
0.811669225344079 0.442032766064970
K=5 . |
0.565222820508010 x 102 0.210469457918546 x 10~!
0.734303717426523 x 10~ 0.130705540744447
0.284957404462558 0.289702301671314
0.619482264084778 0.350220370120399
0.915758083004698 0.208324841671986
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and Eg is the amplitude of the incident field. Hence
the excitation voltage column vector (50) is given by

[Vl = Eo lie'/.kf(‘nb'.pm] ‘ (60)
Computation of Far Scattered Field
The scattered electric field is given by
. [ , 2 ’ ’
B = —jors == | JpH( (Klp—p/ldc’. (61)

If p is assumed to be in the far field, [pj=p >> |p'l,
we may employ the asymptotic form of the Hankel
function for large argument, given by

R B L L )
where p is the unit vector in the direction of the ob-
servation point making an angle ¢ with respect to the
X axis,

P =Xcos o+ysin . (63)

Employing (62) and (63} in (61}, we obtain
SC _ wu —/(kp+%")J Ap' jkp.p dc'. 64
2 \/Me CL(D Je (64)

Alternatively, we obtain (64) directly from (27) and
{29). With our approximation (45) for J, on C, this
becomes

, o
Esc —jlkp+3E I gnJ e/kpp d
\/ 81ckp 2 d
= OH oitkorF I, 77ekPP" inc (65
\/8mkp nz{ v )
where p' is given by (52}, and the “sinc” function is
sin{

defined as sincx = i with argument

n_kb-(p3-P7)
A 2n

The integral in (65) alternatively may be evaluated nu-
merically using a Gauss—Legendre rule from Table 3.
If the subdomains are sufficiently small, even a one-
point approximation may be used, leading to the ap-
proximation

(66)

N
SC _ wu —jkp+3E 1,0" jkp.p”
RCT Z ‘
= O jtke+3) 7y jkp-p 67
T L] [*00°], (67)

where the superscript t denotes the transpose. An im-
portant observation is that the same algorithm may be
used to evaluate both {60) and the last column vector
in (67).

Numerical Results

Figure 7 shows the current distribution on a square
cylinder illuminated by a TM plane wave. Each side
of the cylinder is of width 24, and the current distribu-

Figure 7 Current distribution on a square cylinder illuminated
by TM plane wave.
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tion is plotted beginning from the middle of the illumi-
nated side. The singular nature of the current parallel
to the edges is evident in the figure. As the frequency
increases, the current on the illuminated side should
approach the physical optics result 2H™, and this be-
haviour is evident in the figure. For these computa-
tions, the cylinder cross section was subdivided into 40
subdomains. Also shown in the figure for comparison
are results from the magnetic field integral equation
(MFIE) approach to be considered in §3.

In Fig. 8, the bistatic radar cross section of the
cylinder for the same illumination is given. The ob-
servation angle ¢ = 0° corresponds to the cylinder’s
backscattering direction.

Inhomogeneous Cylinders: Elec-
tric Field Wave Equation, TM

Polarisation

§3.

In this section, we specialise the vector wave equa-
tion to a scalar wave equation and solve it as an inte-
rior problem using the finite element method (FEM).
In reality, the variational formulation of FEM is

Figure 8 Bistatic radar cross section of square cylinder illumi-
nated by TM plane wave.
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equivalent to the MoM, but historically the former
has been usually applied to partial differential equa-
tions while the latter has typically been applied to in-
tegral equations. In recent years, it has become more
common to formulate the FEM from the weak form of
the underlying partial differential equation, and this
approach is even closer to the spirit of the MoM ap-
proach. Because it is simpler to apply, we also present
the FEM from this point of view; we establish the
equivalence of the variational FEM and MoM ap-
proaches in the following section.

The vector wave equation for the electric field, (7),
reduces to a scalar form when only a single compo-
nent of E is present. For example, we assume that all
field quantities and material parameters are indepen-
dent of z and there exists only a z component of the
electric field—the so-called transverse magnetic polar-
isation. The problem is thus two-dimensional, and
hence we restrict consideration to the domain S, the
cross section of the cylindrical geometry in the z=0
plane. We assume that C is the boundary of S, and isa
(closed) curve of finite length in the plane z = 0. With
these assumptions, we write E = E,(p)z, ] = J,(p)z,
where p = xX +7y is the two-dimensional position vec-
tor. For simplicity, we also consider isotropic media,
1 Lp) = 171 (p)T, €:(p) = €(p) T, where T is the iden-
tity dyad. Thus the wave equation (7) reduces to the
scalar, two-dimensional form

V(4 'VE,) + k3¢, E; = jouo],, pES, (68)

where V = f(% +§faa—y is the two-dimensional nabla op-
erator. Equation (68) is an elliptic partial differential
equation, for which boundary conditions on C must
be specified to uniquely determine a solution.

The equality (68) is termed the strong form of the
scalar wave equation; it must hold at every point in
the domain. In a numerical solution, however, we
must necessarily approximate E, in (68), and hence
it will not be possible to satisfy the equality every-
where in the solution domain. Instead, we enforce
the equality in a weighted average sense. This is done
by requiring the equality of an inner product of both
sides of (68) with a set of weighting or testing func-
tions. The inner product used is defined as

<AB>= LA(p)B(p)dS. (69)
Usually one of the terms in an inner product is con-
jugated, but without the conjugate the product often
gains important properties stemming from the reci-
procity of fields. To distinguish it from the usual form,
this type of inner product is called a symmetric or
pseudo-inner product.

Thus, we assume the availability of a suitable set
of weighting functions A,,, multiply both sides of
Eq. (68) by A, and integrate over S. We further
apply an integration by parts to the first resulting

term using the identity V. {ya) = yV-a+a-Vy, the
divergence theorem and Faraday’s law specialised to
the TM case, %VEz x z = —jougH. This results in

the following so-called weak form of the scalar wave
equation

-< VA,,,;,u,_lVEz > + k(z) < Ap, & E; >

+ioo JCAmH-Ich =i < Ay Jo >, (70)

where £ =z x G is a unit vector tangent to C, and @
is the outward unit normal to C in the plane z=0
(cf. Fig. 9). From the method of moments point of
view, instead of enforcing equality (68) directly, (70)
enforces equality of its generalised moments with re-
spect to the testing functions. The symmetric product
between the two vector quantities appearing in (70)
is defined as

<A;B >=[ Alp)-B(p)dS.

S

(71)

An advantage of the weak form is that the bound-
ary conditions of the problem can be incorporated in
the integral term involving H; values for E, H, or a
relationship between them can be inserted into this
term. If the boundary C of S is a conductor, i.e., it is
the boundary of a two-dimensional cavity (waveguide
at cutoff), then the tangential electric field vanishes
on the boundary: E, = 0 on C. To enforce this so-
called Dirichlet boundary condition, we must choose
a basis representation for E, that vanishes on C. As
we will see, the testing functions A,, will also serve
as basis functions for representing E,, and hence they
must vanish on C. Consequently, the integral term
over C in (70) also vanishes. Since it must be enforced
explicitly, the Dirichlet boundary condition is called
an essential boundary condition. By contrast, if the
tangential magnetic field vanishes on the boundary,
ie,{-H= ﬁ% =0 on C, then we need only sub-
stitute this condition into (70), which also eliminates
the integral over C. This so-called Neumann bound-
ary condition places no requirements on the bases,
and hence is known as a natural boundary condition.

Figure 9 Surface S with boundary C subdivided into triangles
Se.
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In the following we assume that C is a conducting
boundary with E, = 0 in order to illustrate applica-
tion of essential boundary conditions.

We can approximate the solution domain S by
subdividing it into a set of E triangular elements
S¢ e=1,2,..,E as shown in Fig. 9. The result-
ing approximation to the original domain is denoted
S = UE | $¢ and constitutes the problem’s geometry
model. The data structure for describing the model
consists of two tables of data. As Table 5 illustrates,
one table contains node data locating the coordinates
of the model’s nodes or vertices, p, = x,X+y,¥, v =
1,2,..., V. A second table, illustrated by Table 6,
contains the connection data, which lists from Fig. 9
the nodes making up each triangular element. These
are listed as global node indices in the table.

The remaining entries in the table are concerned
with the approximation of E,, to which we turn next.
First we note that in converting the scalar wave equa-
tion from the strong form (68) to the weak form {70),
E, must no longer be twice differentiable but merely

Table 5 Partial Listing of Global Node Coordinates

Global Coordinates
node index v
Xv Yv
1 -0.500 1.100
2 1.100 0.700
12 0.000 0.000
15 0.700 -1.100

Table 6 Partial Listing of Element Connection Data Corre-
sponding to Figs. 9 and 10

Local node 1 Local node 2 Local node 3
Global Global Gilobal
] node no. node no. node no.
pof's | indox pors | index Dors | index
1 9 11 10
0 I 0 1 it 1 0 i 0
2 11 1 10
T 1 o 1 o o || o
14 15 13 12
1 I 5 1 it 3 1 i 2
18 8 11 9
0 i 0 1 I 1 0 I} 0

differentiable. This reduced requirement is accom-
plished at the expense, however, of requiring differen-
tiability of the testing functions. Since now both basis
and testing functions must be differentiable, this sug-
gests using the same set of functions A, for both basis
and testing. This choice, known as Galerkin’s method,
is assumed here, although it is by no means necessary.
We further note that E, is everywhere continuous in
S, since, in the two-dimensional problem, it is tangent
to any material boundaries. Both continuity and the
differentiability requirement of our field model may be
simultaneously realised if we choose a piecewise linear
representation for E, on S, as depicted in Fig. 10. The
figure illustrates a perspective view of the geometry of
Fig. 9 with the piecewise linear approximation of E,
plotted in the vertical dimension.

As the figure shows, the piecewise linear represen-
tation also easily accommodates the boundary con-
dition E, = 0 on C. The representation is completely
specified if we know only the values of E, at the in-
terior (nonboundary) nodes of S, the so-called de-
grees of freedom (DoF) of E,; field values at all other
points are merely determined from these by linear
interpolation. Each interior node is assigned a DoF
index, n=1,2, ..., N, where N is the total number of
unknowns or degrees of freedom. The required asso-
ciations between DoF, local and global indices are il-
lustrated in Table 6 for the geometry of Fig. 10. Note
that in the table, boundary nodes are easily identified
by their null DoF index.

The piecewise linear approximation of the field E,
may be represented as a linear combination of a set
of pyramidal interpolation functions A, as shown in
Fig. 11. Each internal node with DoF index # has
an associated basis function, A,, where A, is a linear

Figure 10 Piecewise linear representation of E, and DoF la-
belling on S, the approximation to S of Fig. 9.
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function with a unit value at node 7 and zero value at
the remaining nodes of the triangles surrounding and
sharing node #. The basis function vanishes every-
where except on these triangles, known collectively
as the support of the basis function.

One should keep in mind that basis function A,
is associated with an interior node with DoF index
n. This is generally not the same as the nth node of
the geometry representation because the latter also in-
cludes boundary nodes. In terms of these bases, the
field is represented as

N
EZ(p)~ Y, Vahn(p) = [An(p)]'[Val, (72)
n=1

where the superscript t denotes the transpose and the
coefficient V,, represents a single DoF, the approxi-
mate value of E, at the node with DoF index #n. Note
in particular that no degrees of freedom are associ-
ated with boundary nodes where E, vanishes; if bases
for these nodes were included, their coefficients would
vanish,

Up to three bases have supports overlapping a sin-
gle element; clearly, they are the bases whose DoF
nodes are vertices of the element. On an element e, a
local indexing scheme is used to label the restrictions
of these bases to the element. That is, we write

An(‘)) = Af(p)a

if the 7th local node index, i = 1,2 or 3, of element e
corresponds to the node with DoF index z. The re-
strictions of the bases to an element are illustrated in
Fig. 12. As will be seen, this local representation and
indexing scheme is also convenient for other quanti-
ties defined on the element.

pest (73)

It should be kept in mind that a node may be re-
ferred to in up to three different ways. As seen in
Table 6, an interior node of element e may have a
global node index v, a global DoF index 7 and a lo-
cal node index i. Also note that a local index 7 for an

Figure 12 Local bases on element e; local node i =3 is as-
sumed to be associated with global basis with DoF index n. All
elements and bases are mapped to the parent triangle shown.

An(p) = Agp) =&

Local node 3, Aﬁ(p) =&
Global DOF n 3
1.0

&2

2 E3=1-8-&

— 1.

1 N » 54
1.0

T
3 1.0

interior node of element e corresponds to a single DoF
index, but not vice versa.

Substitution of the representation (72) for E, into
the weak form of the wave equation, Eq. (70), yields
the matrix system

[Ymn][vn] = [Im]s

where [V,] is a column vector of unknown voltage
coefficients,

(74)

[Yinun] = l[an] +70[ Crran)

75
P (75)
is the system admittance matrix and
Ton =ty < VAmspy 'VA, >, (76)
Cinn = €0 < Ay €Ay > (77)

are the reciprocal inductance and the capacitance ma-
trices, respectively. The source is represented by the
excitation column vector

[Im] = _[< Arm]z >]-

Note that the units of V,,, Yin, Tmn, Cun and 1, are
V/m, S-m, H"1.m, F-m and A, respectively. Once (75)
and the excitation column vector are obtained, the
coefficient column vector [V,] may be found by al-
gebraic methods. We turn our attention next to the
evaluation of the elements of the matrix [Y,,,]| and
column vector [I,].

(78)

The Element Matrix and Matrix Assembly

Consider first the evaluation of a capacitance matrix
element, C,,,. Note in (77) that there will be no
contribution to C,,, from bases A,, and A, if their
supports do not overlap. Hence, many of the off-
diagonal elements of C,, are zero; i.e., the matrix
[Conn] is sparse. 1f one attempts to fill the matrix
[Conn] by naively advancing through its row and col-
umn indices, one must constantly search through the
element connection data to determine which elements
are in the support of A,, and A, and then determine
whether their supports overlap. To avoid this time-
consuming process, a more efficient approach is usu-
ally taken. Note that the symmetric product integral
involved in a capacitance matrix element can be writ-
ten as a sum over contributions from individual tri-
angle elements S¢ as

Cim=€0 < Ay €Ay >=¢€g JZS’ & Am(P)A(p)dS

E
=Y €[ AnlpInalolds, (79)
e=1

where, for simplicity, we have assumed that the per-
mittivity is constant in each element; i.e., ege, = €°
in element e. Of the N x N basis pair combina-
tions that may appear in the last integral, only up
to nine combinations will make any contribution to
the integral—those pairs whose associated DoF nodes
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are also nodes of S$¢. The interactions between these
contributing basis pairs on S¢ are equivalent to those
between the three local bases depicted in Fig. 12. In-
deed, the latter are just the restrictions on S¢ of the
global bases contributing to element $¢. Thus, using
(73) in (79), we find that the interactions between
the global bases on $¢ may be completely determined
from the contributions of element matrices

[Col= [ee Jse Af(p)Af(p)dS} , (80)

in which Cf. represents the interaction between bases
Aj and A7 associated with local node pairs i and j,
i,j=1,2,3,of elemente,e=1,2, ... ,E.

The same arguments apply to the reciprocal induc-
tance matrix (76), so that we may define a reciprocal
inductance element matrix,

rfi= -,

o (81)
J ﬂe

H VAS VA ds] ,
3¢ 7
where ug = y, = u? is assumed constant in an element.
The capacitance and reciprocal inductance matrices
for an element may be combined to form an element
admittance matrix corresponding to the system ad-
mittance matrix (75),

1
[rel. (82)

ey _ - e1, &
[Y,',‘] = I(D[C,','] + i
In the matrix assembly process, the elements of the
element admittance matrix [Y;] are then assembled
as contributions to the global admittance matrix Y,

according to the following Matrix Assembly Rule:

MATRIX ASSEMBLY RULE

Yi‘; isadded to Y, if m, n are nodal degree

of freedom indices associated with local
nodes 7 and j, respectively, of element e,

The assembly process completes the connection be-
tween locally and globally defined quantities. Clearly,
the correspondence needed to carry out the process
for a given element e is simply that between the lo-
cal node indices at the top of Table 6 and the global
degree of freedom indices listed for element ¢ in the
table. The resulting assembly process for the meshing
scheme of Figs. 9 and 10 is partially summarised in
Table 7.

Evaluation of the Element Matrices

We consider next the detailed evaluation of the
element capacitance matrix. To parameterise the
integral over a triangle, we introduce a set of
normalised area coordinates. Let a point in the trian-
gle be designated by the position vector p. As Fig. 13
shows, the point defines a subdivision of the trian-
gle into three subtriangles. The area of the subtrian-
gle opposite vertex 7 has area A;. Normalised area

Figure 13 Subdivision of a triangle into three subareas defining
normalised area coordinates.

Table 7 Assembly of Element Matrix Contributions to System
Matrix Elements

Contributing elements Elements added to
of element matrix in system matrix
Yi Y11

Y3 Y11

i Yss

14 \14
Yiz. Yo

14 14
Y13’ Y31

Yss, Y3s (respectively)

Y52, Y25 (respectively)

4
Y Yas
Yis, Y3 Yap, Yas (respectively)
yis Yo
Y33 Y

coordinates are then defined as

A.
Gi=

Ae’ i:l’293’

(83)

where A¢ is the area of element e. Since the areas of
the subtriangles sum to A%, the coordinates satisfy

E1+&2+83=1,

so that only two of the coordinates are independent.
From (83), clearly £; = 0 at edge i and is unity at ver-
tex 7 of a triangle. In effect, every triangle, as well as
the scalar bases defined on them, is mapped onto a
standard parent triangle, as depicted in Fig. 12.

(84)

Table 8 summarises the computation of an ele-
ment triangle’s area A¢, edge vectors &, height vectors
h; and coordinate gradients V&;. For our triangles
in the x~y plane, the triangle’s unit normal f is z.
These quantities are also depicted in Fig. 14 and are
used in evaluating element matrices for triangular
elements.
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Figure 14 Edge and height vectors defined on a triangle.

Table 8 Geometrical Quantities Defined on Triangular Ele-
ments

Edge vectors b =pli-pLys & = 10l

ti=4%i=1,23
Area Ao = lizxbial j_q 2 or3
Height vectors hi=24; b= —fixd;
hj=hh;, i=1,2,3
Coordinate gradients Vé;:—%fj, i=1,2,3

Since the coordinates &; vary linearly from zero
along edge 7 to unity at vertex i, they are also the lo-
cal linear interpolation functions depicted in Fig. 12.
In terms of area coordinates then, points in a triangle
may be represented by linearly interpolating its vertex

coordinates

p =p5E1+p562 +p58s, (85)

where pf is the position vector of the ith vertex of el-
ement e. As shown in Fig. 12, the local bases are also
linear interpolating functions that in area coordinates
are simply

A= (86)
Furthermore, since
ap ap
dS = | s X o |d&;1 &y
% 1 9 S-1d5in
=1 x Gq1d€im1 dGint
=2A°dE;_ 1 d&;a, (87)

where the index arithmetic is performed modulo
3, any integral over an element triangle may be
expressed in terms of an integral over the parent
triangle as

1

1-&is1
[ et p5Ea + o581 da

|y fords =24

K
k k k
~24° Y wif(psEY +p5EY +05EY),
k=1

(88)

where the last line is a K-point rule for numerical in-
tegration over a triangle. Sample points and weight-
ing coefficients for K = 1,3,7 are given in Table 9
(Hammer et al., 1956; Zienkiewicz, 1971). Combin-
ing (86)—(88) and the results of Table 8, (80) and (81)

Table 9 Sample Points and Weighting Coefficients for K-Point Quadrature on Triangles

K=7, error O)

Sample points, éﬂk), ‘2’”) Weights, wy
(k) _ (k) _glk)
g =1-& -&")
K=1, error O(2)
(0.33333333333333, 0.33333333333333) 0.50000000000000
K=3, error O(£3)
(0.66666666666667, 0.16666666666667) 0.16666666666667

(0.16666666666667, 0.66666666666667)

(0.16666666666667, 0.16666666666667)

(0.33333333333333, 0.33333333333333)
(0.79742698535309, 0.10128650732346)
(0.101286507323486, 0.79742698535309)
(0.10128650732346, 0.10128650732346)
(0.47014206410512, 0.47014206410512)
(0.47014206410512, 0.05971587178977)

(0.05971587178977, 0.47014206410512)

0.16666666666667

0.16666666666667

0.11250000000000

0.06296959027241

0.06296959027241

0.06296959027241

0.06619707639425

0.06619707639425

0.06619707639425
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may be evaluated numerically. To obtain numerically
exact results for such integrals, one should choose
quadrature schemes from Table 9 whose error order is
higher than the highest order of coordinate products
appearing in the integrand. In (80), the integrand is
of quadratic order, and hence K > 3.

In this case, however, the integrals may be evalu-
ated analytically. For example, the element capaci-
tance matrix is easily determined as

(o= [ee JSZ ASAS ds]

- [ZAeee X [Teg daldaz]

e |21
=1§121, (89)
11 2

the evaluation of which is facilitated by the identity

arBet ;o 2A%IBMNY!
Jse§l§2§3ds_ (+B+y+2)1° (90)
The elements of the reciprocal inductance matrix
[['7] are given by

1
? i Jse VE; - VE, dS. (91)
Since &; varies linearly from zero to unity from a trian-
gle’s ith edge to its ith vertex over a distance equal to
its height 4;, the gradient V§; is the (constant) vector
(cf. Table 8 and Fig. 14)

(92)

where h; is the unit outward normal vector in the
plane of the triangle at edge 7. With (92), we find that
the integrand of (91) is constant, and immediately ob-
tain
e_L1GY
i~ u 44’

(93)

For i #j this can be written as

e_ l -6
e 218 x 6

1
ﬁ cot 9,'/'

1 .
=—ZECOt9k’ i4]#k, (94)
where 6; is the (exterior) angle between edge vectors
¢ and ¢, while 6y, is the (interior) angle of §¢ between

edges 7 and j at node k. When i = j, we note that

e 144
ii=E4Ae
16 (=G-0)

T e 4A¢

1 r
= ﬁ[cot 0;+cot O], i#j#k. (95)

Thus, we can construct all the matrix elements Ff]-
from the three values

&g

cot; = —>

i=1,2,3, i4j #k. (96)
For computational efficiency, Silvester and Ferrari
(1996) suggest computing the element matrix [I'] by
expressing the result as a linear combination of terms

associated with the vertices of the triangular element:

cotBr+cotB; —cotB3 —cot 9y
[1";] = e —cot®3 cotB+cotB; —cotHy
—cot By —cotB1 cotB+cotHy
1 1 1
= —cot 81[Q1]+ — cot 82[{ Q2] + — cot 83[Q3], (97)
p p 7
where
[0 0 0]
[O11=10 % ~% s (98)
o -3 3]
1 17
3 0 -3
[Q2]=rot{O1]=]0 0 0|, (99)
1 1
(-2 0 7]
1 1
7 72 0
[Q3] = rot [Q2] = —% % 0 (100)
0 0 0

The rotation operator, “rot”, is defined as the opera-
tor that cyclically permutes row and column indices,
le,1-2-3->1.

Evaluation of Element Excitation Vector

Contributions to the system excitation column vec-
tor,

Uml==<Am, [z >, (101)

may also be assembled from an element column vec-
tor. For simplicity, we assume that the excitation cur-
rent density is constant, J, = J¢, in element S°. Then
the element column vector is simply

€ A€

A
IF1=-]{ < A, 1>= - z3

, 1=1,2,3. (102)

The Matrix Assembly Rule following (82) may also be
used to accumulate these element contributions into
the system excitation column vector [I,,].

Numerical Results

Because we have so far considered only the Dirichlet
boundary condition E, = 0, we cannot yet consider
scattering problems using the finite element method.
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Scattering problems must somehow incorporate radi-
ation conditions at the mesh boundaries. To illustrate
the method for interior regions, however, we deter-
mine the TM eigenfrequencies of an air-filled square
waveguide. Since these are source-free solutions of
the wave equation, we set [I,,,] = 0 in (74) and, using
(75), we find the eigenvalues wl%q of the generalised
eigenvalue problem

[Tl [Vl = 03[ Counl[ Vil

The eigenvalues of the waveguide are known to be
w3, = [5%15]2 (p? +q*) where cq is the speed of light in
air, g is the dimension of a side, and p,q=1,2, ... .
The error in the first five distinct eigenvalues is plot-
ted versus N, the number of subdivisions per side, in
Fig. 15. By plotting the error on a logarithmic scale,
one immediately establishes that, as the mesh den-
sity increases, the error in the eigenvalues decreases

as (1/N)2.

(103)

§4. Moment and Finite Element
Methods

In this section we look at numerical solution proce-
dures for scattering problems from the abstract point
of view of numerical solution methods for linear op-
erator equations; familiarity with the material of the
previous two sections is assumed. The abstract point
of view not only provides a deeper understanding
of the methods, but also illuminates the essential
equivalence between moment, finite element, varia-
tional and other approaches that, for historical rea-
sons, go by different names.

An electromagnetic scattering problem is usually
formulated as a problem in determining an unknown
field or equivalent source # due to a given source or
excitation f. This linear problem (or its linearised ap-
proximant) can be stated in equation form as

Figure 15 Convergence of first five distinct TM eigenvalues of
a square waveguide.
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Cu=f, (104)

where L is a linear operator, i.e., one satisfying the
linearity condition

Llauy +buy) =alui +bLuy (105)

for arbitrary constants a and b. In scattering prob-
lems, £ is usually a differential, integral or integro-
differential operator relating a field within a domain
D to its sources in the region or its values on the do-
main boundary 0D.

Most methods for obtaining numerical solutions of
(104) can be viewed as projection or moment meth-
ods. Having presented some specific examples in
previous sections, it is now useful to summarise the
approach from this abstract point of view. The first
step in the process is to introduce a symmetric product
between two scalar functions # and v of the form

uvdD, D=C,S,orV,
D

<up>= J (106)
on the domain D with differential element dD. Do-
main D may be a line or (one-dimensional) curve C, a
(two-dimensional) surface S or a (three-dimensional)
volume V. Clearly, the symmetric product satisfies the
linearity conditions

<aui+bur,v>=a<u,v>+b<ur,v>,

<uycvyi+dvy > =c<uvy > +d<u,vy>. (107)

The symmetric product is easily extended to the case
in which # and v are vector functions, u=uand v=v,
and, if necessary, this case can be distinguished explic-
itly by writing

<u;v>=JDu-vdD. (108)
In integral equation formulations, convolutional in-
tegrals between v and a Green’s function G(r,r’) (the
kernel of the integral equation) appear in symmetric
products with #. When necessary, the various cases
that arise can be distinguished explicitly via the com-
pact notation

<u,G,uv>= JDJDu(r)G(r, (Y dD'dD  (109)
when # and v and the Green’s function are scalars,
<uw;G,v >'=‘J’ J u(r)-v{t\G{r, 'Y dD'dD (110)
DID

when u and v are vectors and the Green’s function is
a scalar and

<u;G;v >EJD[Du(r)-g(r,r')~v(r’)dD'dD (111)

when the Green’s function is a dyad, G. As in {106),
the domain D in any of these symmetric products may
be a curve C, a surface S or a volume V. We ob-
serve that the symmetric product merely generalises to
function pairs the dot (inner) product between pairs
of N-dimensional vectors u = (u1,u3,...,un) and
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v=(vi,v2,...,uN) given by ZnNzl #,U,. Further borr-
owing from the language of vector analysis, we say
that the symmetric product {106) represents a projec-
tion of u onto v or vice versa. By projecting Eq. (104)
onto a space of so-called weighting or testing func-
tions w, (104) is reformulated in the so-called weak
form:

<w,Lu>=<w,f>. (112)

In contrast to the strong form (104) for which equal-
ity holds at each point in D, (112) requires only that
equality hold in a (weighted) average sense for var-
ious choices w selected from the space of weighting
functions. If the space of w for which (112) holds
is sufficiently large (infinite, in general), it may be
shown that (112) implies that (104) holds almost ev-
erywhere—that is, at all but a denumerable set of dis-
crete points in D. In a numerical solution, we can only
choose a finite number of these weighting or testing

functions, i.e., a set {wg,\[)},m =1,2,...,N. Ideally,
this set should have the property that as N — oo, the
equality (104) holds almost everywhere. Such a set of
testing functions is said to be complete, and guaran-
tees that if N is chosen sufficiently large, the error in
the equality can be made arbitrarily small.

For a numerical solution, not only the equality,
but also the unknown # must be approximated. We
choose the approximation

N
U~ = ZU,,M,,, (113)
n=1

where U, is a set of unknown coefficients and #,, 7 =
1,2, ..., N, is a set of known basis functions capable
of providing a good approximation for ». The repre-
sentation {113) reduces the infinite-dimensional prob-
lem of determining # at all points within its domain
D to the more manageable problem of determining
a finite set of unknown coefficients U, a task more
suited for computation. To obtain a unique solution,
the #,, must merely be independent; to obtain a #u-
merically stable solution, we should also ensure that
the bases have a high degree of independence, as mea-
sured by their projections on one another. Orthonor-
mal bases u,, whose projections satisfy

1, m=mn,

< um,un>:J Uy U dD = Oy = { (114)
D

0, m#n,

where 8,,, is the Kronecker delta, are ideal, but such
bases are difficult to define for arbitrarily shaped
domains D. As an alternative, we first approximate
D by subdividing it into a finite set of canonical
subdomains or elements (e.g., line segments, trian-
gles, rectangles, or tetrahedrons) D%,e=1,2,...,E.
Taken together, the elements provide an approxima-
tion Dto D, ie., DA D= UleDe. It 1s convenient to
define a set of interpolatory polynomial bases u, on

D with the property #,,,(r,,) = 8,1, where 1, n=1,2,
...,N is a set of interpolation points on D. These
bases clearly have the property that

M=z

U (1) 11n(r}) = Spmn. (115)

j=1
The similarity between (114) and (115) is clear, and
indeed it is found that interpolatory bases are gener-
ally highly independent and that calculations involv-
ing them are usually stable. Thus it is no accident
that interpolatory bases are at the foundation of most
numerical methods for solving (104).

Substituting the representation (113) for u into the
weak form (112) and choosing a set of testing func-
tions {w =w,,, m=1,2, ..., N}, we obtain

N

S < wm, Lttn > Up =< wpn, [>, m=1,2,...,N, (116)

n=1
which may be put into matrix form as
[Linn][Un] = [Fom],

where L,y =< wy,, Lu, > and F, =< wy,,f>. So-
lution of the linear system (116) or (117) yields the
column vector of unknowns, [U,,], which in turn pro-
vides an approximation to # throughout D by (113).
This result may also be written as a symmetric prod-
uct of column vectors as

URU = [Un]r[unj = [”n]r[Un]’

(117)

(118)

where “t” denotes transpose, i.e., [#,]" is the row vec-
tor formed by transposing the basis function column
vector [u,].

Once an approximate value for u is obtained, one
is often interested in determining a scalar physical pa-
rameter or figure of merit that depends linearly on
u, i.e., a linear functional of u, I{u]. For example,
I{u] might be the capacitance of a conducting struc-
ture with surface charge density u or I[#] might be a
vector component of the far field scattered by a con-
ductor with surface current density #. Even the value
of u at a point r in the solution domain, «(r), is a lin-
ear functional, although it may become unbounded at
points where the field is singular. The Riesz represen-
tation theorem (Stakgold, 1967) guarantees that for
any bounded linear functional there exists a function
g such that the functional can be represented as the
symmetric product of # and g as

Mu]=—<ug>, (119)

where the minus sign is introduced merely for
convenience.! Once an approximate solution # has
been obtained, functionals on # may be approxi-
mated as

N
[#]=—<it,g>= - Uy < ttp,g>

n=1

= —[UnT (< v, g > 1

I[u] ~

(120)
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The procedure outlined above constitutes the
MoM approach (Harrington, 1993) for solving the
linear operator equation (104). The steps employed
in the approach may be summarised as follows:

e Subdivide the problem domain D into E sub-
domains or elements D¢, approximating D as D =
uE pe.

o Choose a set of interpolating or other appropriate
basis functions {u#,} defined on D and approximate
in terms of a set of unknown coefficients U, as

urmii = Y Untty = [Un]* ().

e Choose a set of weighting or testing functions
{t,}. When the basis functions {u,,} are also cho-
sen as testing functions, the approach is known as
Galerkin’s method.

o Substitute the approximation # into (104) and
test the resulting equation with the w,, to enforce
the equality in a weighted average sense. Since test-
ing amounts to forming a symmetric product or pro-
jecting the equality onto the set of testing functions.
Hence the method of moments is also called the
method of projections. If L is a differential or integro-
differential operator, integration by parts is often used
to transfer differentiation onto the testing function,
thereby reducing differentiability requirements on the
bases u,. Boundary terms resulting from integration
by parts often can be eliminated or evaluated using
boundary conditions of the problem.

o Solve the resulting matrix system

[< wm, Luy >][Un] = [< wm,f>]

for the unknown coefficients U,,. In principle, the sys-
tem may be solved using any classical direct or iter-
ative solution method; in practice, properties of the
MAatrix < why,, Lut, > may determine which of these or
other special purpose approaches should be used for
efficiency.

e Use (119) to approximate # or to determine de-
sired figures of merit according to

Iul~I#) =—< 0,8 >
N
=—2Un<un,g>

n=1
= = [Un]t[< 4,8 >]. (121)

The Variational Approach and the Moment Method

A linear operator equation may also be formulated as
a variational problem, and an approximating linear
system of equations can be obtained via the Rayleigh-
Ritz procedure. When the variational approach is for-
mulated in the most general way, it is found to be
equivalent to the moment method in the sense that
both approaches yield the same system of equations

when the sets of underlying approximating functions
are identical. Hence the variational and moment ap-
proaches yield the same approximate solution #. To
see this, we require the notion of an adjoint operator.
The operator LT adjoint to £ is defined as the operator
for which

<w, Cu>=< LYw,u> (122)

for arbitrary # and w. For most practical problems of
interest the adjoint operator exists and is unique, as we
assume in the following. It often happens that £ = L7,
in which case the operator is said to be self-adjoint.
For differential operators, for example, the adjoint
is usually found by integration by parts; for integral
operators, the adjoint operator is an integral opera-
tor with the same kernel as the original integral equa-
tion, but with the dependence on the observation and
source point variables reversed. For a matrix operator,
the adjoint is the transpose of the original matrix.

The variational formulation begins by considering
some linear functional that we wish to compute, say
I[u}=— < u,g> asin (119). The function g appearing
in the functional is used to define an auxiliary adjoint
problem,

Lw=g. (123)

Note that in the adjoint problem, g plays the role of
the source or forcing function of the problem having
w as its solution. While v may not always have a
clear physical significance, it plays an important role
in deriving the desired variational property. Although
we may have no direct interest in the adjoint prob-
lem, we see that the solution to the adjoint problem
at least provides an alternative way to represent the
functional (119) since

u]=—<ug>=—-<uLlw>
=—< Luw>=—-<fiw>, (124)

where (104), (122) and (123) are used. In electro-
magnetics, this dual representation of the functional
is usually a consequence of the reciprocity (Harring-
ton, 1961) between sources and fields.

A generalisation of the functional I[«] is the so-
called bivariational functional given by

i, ] =< Cit,ip > —< it,g > —< f,iv>, (125)

which is easily seen to reduce to I[#] when # = # and
iv=w. InEq. (125) we regard the two functions # and
ib as approximate or frial solutions to the original and
adjoint problems, respectively. If we define the error
in # and w as

Su=n—u, Sw=w-w, (126)

respectively, then, using (122), (123) and the linearity
properties of the symmetric products, Eq. (125) can
also be written as

i) = — < u,g > + < LOu, 8w > . (127)
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In this form, it is not only clear that I[#, @] reduces
to I[u] when # = u and @ = w, but also since the last
symmetric product in (127) involves the product of
two first-order error terms, the error in the functional
is seen to be of second order in 8u and dw. That is,
the functional is stationary for variations du and dw
in # and @ about u and w, respectively. This is the key
feature of I[u,w] in (125) that makes it a variational
quantity.

In the so-called Rayleigh-Ritz procedure, # and w
are both approximated in terms of basis function sets
{u,} and {w,,}, respectively, as

=Y Unt (128)
n

and

=Y Wit (129)
m
where the bases are chosen to yield good approxima-

tions to # and w. Substituting (128) and (129) into
(125) yields

ity @] =YY Wi Un < Ltty, Wy >
m n

=Y Un < ttn, 8> =Y Wi < fywm > . (130)
n m

A pair of linear equation systems for determining the
coefficients U, and W, are then obtained by requiring
that the first-order variations of I[#, @] with respect
to the coefficients U,, and W, vanish, that is, by en-
forcing the stationary property of approximations to
u and w. Thus we require that {130) be invariant with
respect to first-order variations in the pth coefficients,
U, and W, by setting dl[it, ] /oW, = dl[i, ] /0U, =
0. On replacing the dummy index p by 2 in the result-
ing equations, we obtain again the moment method
equations (116} for determining U,

Y Un < W, Lty >=< wp,[>, m=1,2,...,N (131)

n

and a second set of moment equations for determining
Wons

sz< Ly, Wy >=<ty,g>, n=1,2,...,N. (132)
m

We also see that Eq. (132) for determining the adjoint
solution may also be obtained by applying the mo-
ment method directly to the adjoint problem (123)
with the roles of basis and testing functions inter-
changed.

Assuming that the moment equations (131) and
{132) can be solved to obtain the coefficients U,, and
W, for approximating # and w, we return to the
initial problem of evaluating the desired functional.
Apparently, we now have a choice of substituting our
solutions into either I{u] or I{u,w]. Although more
work is required since both # and w are needed, we try
the latter since we know it to be stationary and hence

possibly more accurate. Thus the approximations of
u and w are substituted into (125), which we now
write as

i, w] =< La—f,iv>—-<it,g> . (133)

In this form, it is easily seen that, in view of (131),
the quantity represented by the first term on the right-
hand side of (133) vanishes:

< La—fw>

=2Wm ZUn<£un,wm>—<f,wm> =0. (134)
m n

Hence for &t and @ satisfying (131) and (132), we
have

ity o] == < ityg>= =S Un < tinyg>. (139

We now see that the same result could have been ob-
tained merely by substituting u ~ i into I{u] directly;
i.e., I[#] = I[in, ] if &« and i satisfy the moment equa-
tions. Since # can be determined from the moment
equations (131) independent of i, and, as seen, Ij#]
yields the same stationary value as I{#, @], solving the
adjoint problem becomes superfluous. Furthermore,
we note that the moment equations (131) for deter-
mining i are independent of g and hence of the linear
functional we wish to compute. Thus any bounded
linear functional I[u#] we compute using # ~ i from the
moment equations is automatically stationary. Since
the moment formulation is more direct than the vari-
ational procedure, we can always choose to use the
moment approach, taking comfort in the knowledge
that any bounded linear functional computed from its
solution is automatically stationary.

Here we emphasise that the variational property
of the moment method in its general form depends
on use of the bivariational functional (125). For
self-adjoint problems, for example, and with g =/,
the adjoint problem becomes identical to the original
problem, Lu = f, and the bilinear functional reduces
to I[#] =< Lit, 51 > -2 < [, >. If one begins with this
latter functional, however, the moment equations ob-
tained by the Rayleigh-Ritz procedure produce only
Galerkin’s method, and may lead one to the erroneous
conclusion that the general moment equations are not
variational.

Although we have shown that the discretised ad-
joint and original problems are relatively independent,
we point out one connection between them evident
from Eq. (127). Since the error in I[#, @] is clearly
reduced by making both du and dw small, we see
that the accuracy of functional evaluations can be im-
proved by choosing the testing functions w,, so as to
provide good approximations to the solution w of the
adjoint problem.

In the following sections, formulations for a num-
ber of scattering problems of interest in two and three
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dimensions are presented. Initially, only perfect con-
ducting scatterers are treated, but the discrete approx-
imations to the operators developed are used later in
more general scattering problems.

§5. Conducting Cylinders: MFIE, TM
Polarisation

An alternative to the EFIE formulation discussed in
§2 for TM illumination of a conducting cylinder may
be used if the curve C describing the cylinder cross
section is closed. Let fi and £ =2 x fi be unit vectors
normal and tangent to C, respectively. If the cylinder
is replaced by its mduced current J = [,z, then, by the
equivalence principle, the total magnetic ﬁeld con-
sisting of the incident field H™ and the scattered field
H*¢ radiated by the induced current, must vanish just
inside C,

£ (H* +H™) =0, pGLiTnClC, (136)

where p 1 C indicates that C is approached from the in-
terior. Employing (37) and rearranging (136) leads to

J2(p)
2

—o VXA < HER), peC, (137
where HI' = £- HI"® is the tangential component of
Hi™¢ and the simplification £- (A x]) = ({xA)-J=—2-]
has been used. Also making use of (39) and &- (2 x
VG)=(Ix2)-VG =1-VG = £ G, we finally obtain the
magnetic field integral equation for TM polarisation,

Jp) BG(P, )
) J JACY “on dac’ =

where the normal derivative of the two-dimensional
Green’s function appearing in the integral may be
written in several equivalent forms:

Hi(p),

peC, (138)

d R A 4
= Glp,p/) =5-VG(p,p) =fi-i H (kD)

4
- ;_’;coser)(kD), (139)

with D=|p—p'|,0=VD = ppamdcosﬁ n-a.

To discretise (138), we employ a piecewise linear
model of C as in Fig. 2 except that C must now be
a closed curve.” To model the current, the pulse ap-
proximation of Egs. (45) and (46) is used. Also we
use point matching to enforce the equation by setting
p = p” on both sides of (138), where p” = p7" +p7' /2
is the midpoint of element m. This leads to the matrix
equation

(Bl l1La1] = [Ii2¢], (140)

where

Boj—

ET 141
m#n,

B = am im0t 2 ’
"\ o TR B (kD™ dC

and where D™ = [p” —p/|. The normal to segment m
at the observation point, i, may be computed as the
cross product of Z and the unit segment tangent vector

. . A
at the observation point, £ :

@m p2 pl am ém

= e~ (142)
Ipz |

Note that to ensure the segment normal is in the out-
ward direction, it is necessary that the local geometry
nodes be numbered such that one proceeds counter-
clockwise around C in going from p7’ to p5' on ele-
ment m. The integral in (141) may be parameterised
using {52) and (53) and numerically integrated using
the Gauss—Legendre quadrature scheme of Table 3.

The right-hand side excitation vector in (140) has
elements

e _p7 Hine(p ), (143)

which for plane wave excitation may be represented
in a form similar to (58)—(60), yielding

[1inc] = £0 |2 (@ xdne )e—fkf‘*““P’”] L (144)
n
The far fields may be determined from (61) and the
discussion that follows. Numerical results comparing
the MFIE and EFIE solutions for currents induced by
TM scattering from a conducting square cylinder are
in Fig. 7.

§6. Conducting Cylinders: CFIE, TM
Polarisation

For conducting bodies enclosing a domain D =V or
S with boundary 0D = S or C in two or three dimen-
sions, respectively, the electric field integral equation
enforces the condition that the electric field vanish on
the boundary,

Ecan(J) +Ef; =0, peaD. (145)

The magnetic field integral equation, on the other
hand, enforces the condition that the tangential
magnetic field vanish on the surface just inside the
boundary,

AxH(J)+AxH™ =0, pe lim oD. (146)

p1oD

In (145) and (146), E{J) and H(J) represent the scat-
tered electric and magnetic fields radiated by the
equivalent surface current J. It is found that solutions
of these two formulations are not unique at all fre-
quencies. To examine the question of uniqueness, we
note that solutions of (145) or (146) are not unique if
there exist nontrivial solutions Jj, to the correspond-
ing homogeneous (excitation-free) equations,

E@n(Jn) =0, pedD (147)
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or

AxH(J,)=0, pe lim oD, (148)
p1oD

respectively.

At such frequencies, a multiple of the current dis-
tribution Ji, from (147) or (148), respectively, may be
added to any solution J of (145) or (146) and the re-
sult will also satisfy (145) or (146); i.e., the solution
is not unique.

Since the field in (147) is determined from potential
quantities relating Ji, to E, the resulting field satisfies
both Maxwell’s equations and the boundary condi-
tion implied by the integral equation. That is, the field
radiated by Jj, satisfies

VxVxE-k?E = 0,
nxE=0, pe limdD,
p1oD

peD,
(149)

but these are just the conditions for determining the
interior resonant frequencies k = k; = ®;4/I€ of a con-
ducting cavity with @D as its boundary. It is well
known that such cavity resonances exist in both the
two- and three-dimensional cases; in the former case,
the frequencies may alternatively be interpreted as
the cutoff frequencies of the various modes that the
waveguide with boundary dD = C can support. Fur-
thermore, the homogeneous solutions J, are just the
wall currents associated with the corresponding cav-
ity or cutoff waveguide modes. For the TM polarisa-
tion to be considered in this section, these frequencies
are the waveguide cutoff frequencies for the TM
modes of the waveguide with closed boundary 0D = C.
The existence of these frequencies is well known, and
hence we conclude that the EFIE for the TM polari-
sation does not have unique solutions at frequencies
corresponding to the cutoff frequencies for the TM
modes of the waveguide with boundary 0D = C.

By similar arguments, we conclude that the magne-
tic fields radiated by solutions Jj, of the excitation-free
magnetic field integral equation (148) must satisfy

VxVxH-k?H=0,
nxH=0, pe lim oD.
p1oD

peD,
(150)

Exchanging the symbol H for E, we find the above
equation is identical to (149), and hence the same
argument for the existence of homogeneous solu-
tions follows. For the TM polarisation, however,
the magnetic field in (150) is transverse to the cylin-
der axis and when E is substituted for H, the result-
ing equation now involves transverse electric fields.
Hence, in contrast to the EFIE, the MFIE equation in
the TM polarisation has resonant frequencies corre-
sponding to the transverse electric (TE) modes rather
than the TM modes.

For the discretised form of the integral equations
at a resonant frequency k = k;, the condition that a

homogeneous solution exists implies that the determi-
nant of the system matrix approximating the integral
equation should vanish:

det| Zpnllg=t, = 0,  det[Bmn]le=t, = 0.

Due to approximations made, in practice the system
determinant does not vanish identically, but does have
sharp minima at frequencies near the true resonant
frequencies. As these approximate resonant frequen-
cies are approached, the solution often becomes ill-
conditioned; i.e., it becomes unstable and contains
a large error component arising from contributions
of the homogeneous solution Ji. In principle, one
could monitor the system determinant to avoid these
frequencies. However, the magnitude of the determi-
nant not only depends strongly on the scaling of ma-
trix elements, but it also varies over an extremely wide
dynamic range. For this reason, other quantities are
more conveniently monitored instead. For example,
the spectral condition number of a matrix [A,.,], de-

fined as

(151)

_ P\lmaxl
- thin I’
where Apax and Amgip are the maximum and minimum
magnitudes of the eigenvalues of [A,.,], respectively,
has better numerical characteristics and is often mon-
itored to indicate potential problems near resonant
frequencies. If the condition number cond[A,;,] of
the matrix is much larger than unity, or equivalently,
if the reciprocal condition number 1/(cond[A.,]) is
small compared to unity, then ill-conditioning may be
expected. While the spectral condition number can be
expensive to compute, it is often reliably estimated by
many linear equation-solving algorithms. Figure 16
shows the spectral condition number vs frequency for
a circular cylinder.

cond[A] (152)

The alternating positions of the maxima of the
EFIE and MFIE condition numbers illustrate the
fact that the EFIE resonances occur at the cutoff

Figure 16 Spectral condition number for a circular cylinder vs
circumference in wavelengths for EFIE, MFIE and CFIE, TM
illumination.
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frequencies of the TM modes, while those of the MFIE
occur at the cutoff frequencies of the TE modes. At
high frequencies, as Fig. 16 shows, the density of res-
onant frequencies increases so that it becomes increas-
ingly difficult to avoid these internal resonances. Thus
one would prefer a formulation that would work
well at all frequencies. Such a formulation is pro-
vided by the combined field integral equation (CFIE)
(Mautz and Harrington, 1978), obtained by form-
ing the following linear combination of (145) and
(146):

inc .
Etan{]) —aax H(J) = % +o x H™C,

p € lim dD.

(153)
ptoD

The intrinsic impedance 7 is introduced to normalise
the fields so that the quantities added have like dimen-
sions and similar magnitudes. The parameter o is a
dimensionless constant that may be chosen to bal-
ance emphases on contributions from the EFIE or the
MFIE.

As with the EFIE and MFIE, the uniqueness char-
acteristics of CFIE solutions are deduced by examina-
tion of the homogeneous form of the equation,

Eian (J h)
n

+oiixH(Jy) =0, pe limaD, (154)
ptoD

where the right-hand side of (153) has been set to O.
We first assume that solutions are not unique, i.e., that
there exist nontrivial currents, Ji £0, satisfying (154).
Multiplying (154) by its complex conjugate and inte-
grating over 0D, we then obtain

Etan(Jn)
LD< Etan(Jn) '2+ (o HeanTh) |2> dD+2% [Re JBDE(Jh)

n
XH*(Jh)-(—ﬁ)dD] =0, pe limdD, (155)
proD
where o is assumed to be chosen such that % is

real. The term in square brackets is proportional
to the net power radiated by the current Jj, into the
region D bounded by dD. It must be positive if
the region is lossy and vanish otherwise. This re-
sult implies that the first integral in (155) must van-
ish and hence that Eun(Jn) = Huan(Jn) = 0 on 0D,
the limit as 0D is approached from the interior, but
since Eap is continuous across an electric surface cur-
rent, it is also zero on dD*, the limit as 9D is ap-
proached from the exterior. Thus the region outside
oD has a vanishing electric field on its boundary and
is source-free. By the uniqueness theorem for exte-
rior problems (Harrington, 1961), the magnetic field
exterior to D must then vanish also. Hence J van-
ishes since J, = i x (H|3p. —Hlap-) = 0, but J, was
initially assumed nonvanishing, and the resulting con-
tradiction proves the uniqueness of solutions of (153).

The discretised form of the CFIE for the TM polar-
isation is obtained by forming the linear combination
(153) specialised to this polarisation. If a piecewise
constant current representation and point matching
is chosen in a moment solution of (153), the corre-
sponding linear combination of the EFIE and MFIE
system matrices for the TM polarisation arises, result-
ing in the system equation

[Zmn
1

+06an] I} = [% +a1},‘;C] , (156)
where the corresponding matrices and column vectors
are defined in (49), (50), (141) and (144).

As Fig. 16 shows, this combination eliminates
ill-conditioning problems inherent in the original for-
mulations. Once (156) is solved for the current co-
efficients, other quantities, e.g., the far fields given in
Eqgs. (61)—(67), may be determined from them.

In principle, the parameter o need only be chosen
such that  is real, or argo. = —argm. As might be

expected due to the normalisation of the impedance
operator by the intrinsic impedance, values of o
with magnitudes near unity generally result in well-
conditioned systems, although it is found in practice
that quite a wide range of values of o near unity may
also be used.

§7. Conducting Cylinders: EFIE, TE
Polarisation

In §2, we considered the EFIE formulation for scatter-
ing by a conducting cylinder with a TM polarised field
incident normal to the cylinder axis. Here we con-
sider the corresponding TE case; that is, the incident
and scattered magnetic fields have only a z compo-
nent. The fields as well as the induced current are also
independent of the z coordinate in this case, but the
surface current is directed in the x—y plane, tangential
to the contour C representing the cylinder cross sec-
tion. From (9), (10), (12) and (16), the scattered elec-
tric field can be represented in terms of the induced
currents as

ES = —joA — VO, (157)

where the magnetic vector and electric scalar poten-
tials are

A=ujCJ<p'>G(p, p)dc’ (158)

and

1

—_— I. / / d 4 1 9
oo [ VIIGRedc,  as9)
respectively, and the two-dimensional Green’s func-
tion is

1@
16 (kD).

Glp,p) = (160)
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An integro-differential equation for the induced
current is obtained by requiring the total tangential
electric field to vanish on the cylinder:

[i0A+V®lian =Ef5(p), pEC. (161)

A weak form of the equation is obtained by testing
it with a vector-valued weighting function w,,{p) de-
fined on and tangent to the cylinder. Using the iden-
tity V- (w,,,®) = ®V -w,,, + V®-w,, and the divergence
theorem, the term involving the scalar potential may
be integrated by parts to obtain the weak form

JO< W3 A> — < VoW, @ >= < Wy B¢ > L (162)

To eliminate the boundary terms arising from integra-
tion by parts in (162}, it is assumed that the weighting
functions are continuous and vanish at any endpoints
of C. With (158) and (159), we may finally write the
weak form of the integro-differential equation as

1
i ;G,]>+—<V. G,V.-]>
[(D,U(Wm, )J +f0)€ Wma 3 J

= < Wy ENC > (163)
The contour cross section C may be approximated
by a piecewise linear approximation € = ulece, as
illustrated for the hemicylindrical geometry with at-
tached fin in Fig. 17. The node location data are the
same as that of Table 1; the node connection data are
listed in Table 10, which not only includes the data
of Table 2, but also lists the degree of freedom indices
associated with each node as labelled in Fig. 17.

Note that the current in the integral equation is the
net sum of currents on both sides of the conductor sur-
face €. At an endpoint of C, the charge flows contin-
uously from one side of the conducting surface to the
other, reversing direction in the process. Hence the
net current vanishes at endpoints of € and, as the fig-
ure illustrates, no degrees of freedom are associated
with these points. On the other hand, at a junction
between conductor surfaces, such as at node 3 of the
figure, more than one degree of freedom must exist. In
general, if ] surfaces meet, there are J surface currents
into the junction from the various branches. Since

Figure 17 Piecewise linear model of cross section of hemi-
cylinder with fin. The segment and vertex numbering are the
same as in Fig. 2 but DoF labels (in boxes) are added.

there can be no line charge buildup at the junction, the
continuity equation requires that the surface current
densities into the junction sum to 0; that is, they must
satisfy Kirchhoff’s current law. Thus Kirchhoff’s law
provides a constraint condition on the J surface cur-
rents so that there are only J— 1 independent degrees
of freedom. For example, the junction at node 3 in
Fig. 17 is formed by three surfaces, but only two in-
dependent current degrees of freedom (labelled 2 and
4) exist. The data structure illustrated in Table 10
reflects both the element connections and the DoF la-
belling of Fig. 17. Note that the DoF index for a cur-
rent whose reference direction is assumed to be out of
the associated segment has a positive index; the index
is negative if the reference direction is assumed into
the segment. The reference direction for each DoF
may be chosen either arbitrarily or by any convenient
scheme; for example, in Fig. 17 the positive reference
direction is assumed to be from lower to higher num-
bered elements.

Since the divergences appearing in (163) require
that the current be differentiable, we choose a piece-
wise linear representation and write

N
Jp) ~ Y LA (p), (164)
n=1
where A, is a vector-valued basis function,
An(p) = &aAn(p), (165)

with the unit vector &, giving the direction and A, giv-
ing the magnitude of the basis function. The support

Table 10 Listing of Element Connection Data Corresponding
to Fig. 17

Local nodes, element e
1 2
e Global Global
node no. node no.
pors | index  poFs | ingex
1 1 2
0 i 0 1 I +1
2 2 3
1 i -1 2 i +2, +4
3 3 4
1 i -2 1 I +3
4 4 5
1 1 -3 Y I 0
5 3 6
1 l -4 1 i +5
6 6 7
1 I -5 Y f 0
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of the basis function A, is the pair of line segments
associated with DoF index » and sharing a common
node. The unit vector £, is assumed tangent to these
line segments and directed along the positive refer-
ence direction, i.e., towards the common node on
the element with positive DoF index and away from
the node on the element with negative DoF index.
A, = Ay is the scalar linear interpolation or triangle
function associated with the node with DoF n. A sin-
gle basis function is associated with each node that is
not an endpoint or a junction of €, and J— 1 bases are
associated with a junction having | arms. The sup-
port of a junction basis may be any pair of elements
attached to the junction so long as no bases have pre-
cisely the same pair of elements as their support. In
the model of Fig. 17, it is assumed that all bases de-
fined at the junction share the lowest numbered ele-
ment (C? in the figure) as one arm of their support,
while one of the ] — 1 remaining junction arms is as-
signed as the second arm of their support. The magni-
tudes of the two basis functions spanning the junction
arms of Fig. 17 are illustrated in Fig. 18.

With the Galerkin approach, the testing functions
are chosen as w,, = A,,. Substituting this choice and
the piecewise linear representation (164) into (163)
yields the matrix system

[ZinnllIn] = [Viul, (166)
where the system impedance matrix is
. 1
[Zsmn] =/(D[Lmn]+l.z)[smn]’ (167)
defined in terms of an inductance matrix,
[Lmn] = [< Am; Glp,p'), A >] > {(168)
and an elastance matrix,
1 / i
[Smnl = < [<V-Am, Glp,p), V- Au>].  (169)
The excitation column vector in (166) is
Vin = [ < Am;EM > ]. (170)

The system matrix (167) can be most efficiently as-
sembled by evaluating contributions to the matrix aris-
ing from interactions between local restrictions of the
global bases to a single pair of elements. The process is

Figure 18 Bases wrapping around cross section of a junction
of surfaces and their mapping onto a parent element.

Ay g
A % A3=E, A3t
3
4 — 2 L
3 ¢ F——¢
Ere—H

similar to the matrix assembly process associated with
the wave equation (§3), but with one important dif-
ference: In the wave equation, only the interactions
between local bases sharing an element are needed
and the resulting matrix is sparse; for the integro-
differential equation (163), the Green’s function serves
to propagate interactions between local bases on one
element to all other elements. In general then, all pairs
of elements interact, and the resulting system matrix
is not sparse, but instead is said to be full.

The bases whose supports overlap on a common
element e may be written in terms of the locally de-
fined index scheme as

Au(p)=cfAi(p), peC’, (171)

where the basis associated with node i (= 1,2) of ele-
ment ¢ has DoF index n. The factor o7 is a sign ac-
counting for the reference direction associated with
the node and is defined as

1, ith node reference direction out of element e,
—1, ith node reference direction into element e.

(172)

Note that the reference direction for each of the local
bases A{ is always assumed to be out of node i of
element e.

Thus the element matrix corresponding to {167) is

defined as

o) sl 1] 2 ]

o (173)

with each matrix element representing the interaction
between the ith basis of element e and the jth basis
of element f. The associated element inductance and
elastance matrices are

[ ]=u]],. ] Astor-AllorGiprderac| 174
and
[57]= 2 {[..[ 7A@ G617 Afwac'ac], 179

respectively. The element excitation column vector
corresponding to (170) is given by

[ve] = [G?JCE A? Eine dc]. (176)

1

Evaluation of Element Matrices

To evaluate the element matrices, we first note that
the locally indexed bases are simply linear interpola-
tion functions that may be expressed in terms of local
normalised coordinates as

A=, i=1,2, (177)

e A
where €; = €/€¢, €f = —{5 = p] —p5 is the vector be-
tween segment nodes and €¢ = €7 = |€5| is the segment
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length. Since the basis function is linear, its surface
divergence is constant and given by

1
VeAS = (178)
Thus the element inductance matrix is given by
[Le,f] [@f . éf\p”f] (179)
where \Vf’f is the potential integral
eeof (11, ) e
v = 3o, s D) deas (150
and
(4 (4 f t f ’
&1+Pz§2—91§1—02§2 ‘ (181)
Turning to the evaluation of S;f , Eq. (175), we use

(178) and recall that &1 +&; =& +&), = 1 to obtain

i/' MfZ 2

k=1¢=1

(182)

The evaluation of all the element matrices therefore
reduces to the problem of evaluating the potential in-
tegrals (180). For e #f, the Gauss—Legendre rule may
be applied successively to evaluate each integral in
(180). Sampling points and corresponding weights for
one-, two- and four-point Gauss-Legendre quadrature
rules for this purpose are listed in Table 3.

For e = f, the potential becomes

oo (06)2
\{"1/ - 4]

Tl o) .y
[, aHE g dzdz,  s3)

with

= |pf (€1 =& +p5&a—8)) . (184)
The Gauss-Legendre rules may be used to evaluate
the outer integral in (183). However, the inner inte-
gral is singular at D = 0 because, for small arguments,

HY (kD) ~ 1 —/% <1n %D +y> ,

where y=0.5772... is Euler’s constant, and D van-
ishes when &1 =& (i.e., when observation and source
points become equal) in (183). Gauss-Legendre
quadrature cannot be used effectively in such cases.
However, the singularity in the inner integral is easily
handled via the quadrature scheme developed by Ma

et al. (1996) that exactly evaluates f(l) f(E")dE" when
f(&") is a finite linear combination of powers of &’
and products of powers of £” and In&”. To apply the
scheme, however, for each sample point of the outer
integral of {183), the interval of integration of the in-
ner integral must be decomposed into two parts, the

(185)

first from pf to the sample point &(110 =1 —i(zk) and the
second from the sample point to p$. The superscript

k in parentheses denotes the operation of evaluating
at the kth sampling point. In both instances, the in-
terval must be reparameterised to 0 < &j <1 with the
singularity at &7 = 0. Thus the inner integral becomes

ee'[l H(z)
0

1
+ éei(lk) J
Q

1
(kDJE; d; = o5y | H? (kg df

HY (kD}E, e, (186)

k)+p§§(2k)—pf 1, i=1,2, and

k) ¢y .
&/_ &4(1)&2,*' I1,3 ]=l3
j— (k) " '_2

2 2 ) ] =4

parameterises & in terms of §] = 1 —&] in the first in-
tegral of (186), while

(k) s .
g, Efl 2, 3 1= 13
7 gr/ §2 ‘- ] -2

does so in the second.

To evaluate the excitation element vector (176),
consider a plane wave incident from an angle ¢ with
respect to the x axis, and which we write as

where D =

(187)

(188)

EInC = By g /K"P (189)
where Eq = Eo(z x ﬁinc) and
k" = —%cos o — §sin ¢ine, (190)

The global excitation vector is thus
[Varl = [ < AmsE™ > ] = Eo- [A(—k™)], (191)
where

An(k) = JC Amlp)e<P dc (192)
is the Fourier transform of the global basis function.
Thus the corresponding element excitation vector is

[6: < AGE™ S| = 6B - [A(—k™)],  (193)

where

Aftl = [ Astplerp ac (194)
is the Fourier transform of the ith local basis on ele-
ment e. Elements of the column vector may be eval-
uated either analytically or by using Gauss-Legendre
quadrature, and then assembled into the system trans-
form vector. Factoring the incident field amplitude
from the system excitation matrix as in {191) enables
us to use the Fourier transform algorithm both in the
construction of the excitation vector and in the com-
putation of far fields, as shown below.

Evaluation of Far Fields

The scattered far electric field at a radius p and angle
¢ from the x axis has only a ¢ component and, using
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(27), (29) and {164), is given by

Fse o _JOH jou oilkpsn/4) S 1 ¢ ZXP)J A, e P ger
MRV 21
- ](1)/.1 j(kp+m/4) ;\ A ]t I 195
Tt (xp) [Aald)] (L), (195)

where the superscript t denotes transpose and p =
xcos¢ +ysin¢. Note that the far field computation
makes use of the transform of the bases (192).

Numerical Results

Figure 19 shows the current distribution on a square
cylinder illuminated by a TE plane wave. Each side
of the cylinder is of width 24, and the current distri-
bution is plotted vs (normalised) arc length € begin-
ning at the centre of the illuminated side. Note that
as the frequency increases, the current on the cylin-
der oscillates about the physical optics approxima-
tion: 2 x H™ on the illuminated side and zero on
the shadow side of the cylinder. For the computa-
tions, the cylinder cross section was subdivided into
40 subdomains. Also shown in the figure for compar-
ison are results from the MFIE approach to be con-
sidered in the following section.

§8. Conducting Cylinders: MFIE, TE
Polarisation

As in the TM case, a TE form of the MFIE may be
used as an alternative to the EFIE if the curve C de-
scribing the cylinder cross section is closed. With unit
vectors fi and € defined as in §5, and with the cylinder
replaced by its induced current J = o€, the sum of the
incident field Hi™ and the scattered field HS® radiated
by the induced current must vanish just inside C,

(H+H) =0, pelimC, (196)

Figure 19 Current distribution on a square cylinder illuminated
by TE plane wave.
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where p 1 C indicates that C is approached from the in-
terior. Employing (37) and rearranging (196) leads to

Jelp)

2 (197)

+£%VXA>=—H?%N, pec,

where Hi is the tangential magnetic field and fi x =7
has been used. Making use of (39) and z- (@' xVG) =
(2x{)-VG = - -VG = -V'G = % G, we finally ob-
tain the MFIE for TE polarisation,

hm_JhWﬁQmM
2 ¢ on’
where the normal derivative of the two-dimensional
Green’s function with respect to the source point may
be written in various equivalent forms

dc' = -H;"(p), peC, (198)

d ’ A7 ’ 1 Ay oA
37 C0:0) = -V'Glp,p) = & -4 H;” (kD)
- %cose'Hf)(kD), (199)
withD=|p—p'|,0=VD =, " and cos®' = /' - @

We approximate the curve C by means of N
straight line segments, C”, as illustrated in Fig. 2, but
here C must be closed. Since there are no derivatives
on the current in (198), we may employ a pulse rep-
resentation

N
P~ z LI1,(p) (200)
n=1
where the unit pulse function I, is defined in (46).
Point matching may be used to enforce the equa-
tion by setting p = p” on both sides of (198), where
p™ = (p7" +p5')/2 is the midpoint of element m. With
(198)—(200), this leads to the matrix equation

B ([1:1] = [112], (201)

where

Bon =1 2 "7 002)
= k1o, L0 g kD™ dC, i,

and where D = [p”" —p'|. The integral in (201) may be
parameterised using (52) and (53) and integrated using
the Gauss-Legendre quadrature scheme of Table 3.
The right-hand side excitation vector in (201) has
elements
Iinc -

—H(p™). (203)

Far Fields

The vector potential in the far field is, from (27) and
(200),

=M ilker] il,, T[ Malp)e 0¥ dc
VBrkp *
- \/8‘; = eiterd D [T ., (204)
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where

L, (p)e* PP dC’ = ¢"sincy”
C't

1,(p) =j (205)

is the Fourier transform of the unit pulse function,
evaluated as in (65) and (66). From (29), the far elec-
tric field is

Eg = —joAy = —j0d- A. (206)

Numerical results comparing the MFIE and EFIE so-
lutions for currents induced by TE scattering from a
conducting square cylinder are found in Fig. 19.

§9.

Inhomogeneous Cylinders: Elec-
tric Field Wave Equation, TE

Polarisation

With no magnetic currents present, the vector wave
equation (7) becomes

Vx (1 -VxE) - kde,-E = —jouoly (207)
in a volume ¥V, where ky = wy/mp€g. In the two-

dimensional TM polarisation problem of §3, the
equation reduced to a scalar equation; for the TE po-
larisation considered in this section, the equation re-
tains its vector character. Initially we deal with the
three-dimensional form of the equation and specialise
to two dimensions when appropriate. Furthermore,
we assume that V is a cavity with perfect conducting
walls satisfying the vector Dirichlet conditionixE=0
on the boundary S of V.

As in the scalar problem of §3, the finite element
procedure for vector problems assumes that the so-
lution domain is subdivided into a mesh of elements
such as triangles in two dimensions or tetrahedrons in
three dimensions. In modelling vector fields, however,
it is undesirable to interpolate the unknown fields at
the element vertices. There are two principal reasons
for this:

e For ease in modelling, element boundaries
should be chosen to coincide with material bound-
aries. Hence, in general, adjacent elements sharing
a common mesh vertex may have different material
parameters, but boundary conditions and numerical
considerations require that tangential components of
E be continuous across element boundaries. To imple-
ment this condition at a vertex generally requires one
unknown per element interface. Since, on average, six
triangles (two dimensions) or 12 tetrahedrons (three
dimensions) intersect at a vertex, an excessive number
of degrees of freedom results.

o By taking the divergence of (207) and applying
the continuity equation {5), one obtains Gauss’s Law,

k3V - (o€, -E) = kjqy,

which is thus automatically satisfied by solutions of
(207)—unless, as we see above, kg = wy/Ho€0 = 0. In
the latter case, we find directly from (207) that any
curl-free vector, i.e., a solution of the form E = —V®,
that satisfies appropriate conditions on the boundary
of V is a source-free (homogeneous) solution of (207).
Since our interest is in solving (207) for ko #0, the ex-
istence of such nonphysical solutions should not con-
cern us. However, in a numerical solution, if the basis
functions chosen cannot exactly model curl-free elec-
tric fields, then the eigenfrequencies of these homoge-
neous solutions are not confined precisely to kg = 0,
but instead are perturbed to nonzero eigenfrequencies
ko, often within the frequency range of the problem of
interest. These so-called spurious resonances can re-
sult in the addition of strong homogeneous field error
contributions to the correct fields, severely affecting
a problem’s solution. To eliminate these contribu-
tions, it is thus necessary to ensure that the basis func-
tions chosen can model curl-free vector fields, i.e., that
they can model the null space of the curl operator.
This further requires that basis functions have con-
tinuous tangential components across element bound-
aries, since discontinuous tangential components are
equivalent to concentrated vortex sources along the
discontinuities.

The above considerations argue strongly for the
use of so-called curl-conforming bases with continu-
ous tangential components at element edges. In fact,
we choose bases for which the unknowns are simply
the tangential component of the field at the midpoints
of edges of the mesh. In the following, we assume the
existence of curl-conforming bases, Q,(r), that have
continuous tangential components throughout V. Be-
fore developing an expansion of the electric field in
terms of these bases, we use them first to test {(207).
Assuming that # is an index for the degrees of free-
dom associated with edges of a mesh in V, testing
(207) with Q,,(r) leads to

<Qm;Vx(ur_1-VxE)> ~ké<ﬂm;e,-E>

=—jouy < Qs Jy > . (208)

The integral involved in the first symmetric product
in (208) may be integrated by parts using the identity
V- (AxB)=B-VxA—A-VxB and the divergence
theorem, and (1) may be used to obtain

< Qm;Vx(u,'1~VxE)>=< Vxﬂm;p,,'1 -VxE>
—j(x),uoj H-(Q,, xi)dS, (209)
s

where S is the boundary of V. The last integral van-
ishes if either n x H = 0 (vector Neumann condition)
or i x Q,, =0 on S.3 Since we are assuming the vector
Dirichlet condition fix E =0 on S and our intent is to
use the testing functions €2, as basis functions rep-
resenting E, we require the tangential components of
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€,, to vanish on S, thus eliminating the last integral
in (209). Note that the vector Dirichlet condition is
explicitly enforced through the choice of basis func-
tions; hence, it is an essential boundary condition.
Because the degree of freedom associated with basis
functions at boundary edges must vanish, we discard
these bases by assuming that the index m runs over
only the N interior edges of the mesh. Combining the
above results, we obtain the weak form of the vector
wave equation,

<Vx Qs VXE> — k3 < Qpie, - E>
= _703#0 < Qm;JV >
withm=1,2,...,N.
Next we expand the electric field E in the same set

of curl-conforming bases ©,, as used in testing the
wave equation,

(210)

N
E(r)~ 2 V&2, (r), (211)
n=1

and substitute the result into (210), obtaining the ma-
trix equation

[Ymn][vn] = [Im]; (212)
where
Im==< Qus]v >, (213)
1 .
Yimn = —Timn +10 Crn, (214)
o
with reciprocal inductance matrix
1
Tpm=— < VxQup - VxQ, > (215)
HO
and capacitance matrix
Con = €0 < Qs €+ Ry > . (216)

We now simplify and specialise the problem in the
following ways:

e We assume that the media filling the cavity is
isotropic and can be modelled as piecewise homoge-
neous (i.e., medium parameters are assumed constant
within each element).

o We specialise the formulation from three to two
dimensions. Thus the region of interest changes from
V with boundary S to the cross section S bounded by
the curve C.

With these specialisations, the global reciprocal in-
ductance and capacitance matrices (215) and (216)
become, respectively,

1
Tyn=— < VX Qs 1171V Q>
Ho

(217)

and

Con = €9 < Qpy; €80, >, (218)

where the integration implied by the symmetric prod-
uct is now over the cavity cross section S bounded
by C. We assume that C and S lie in the x—y plane
and that there is no variation of the fields with re-
spect to z. The problem further decomposes into two
independent polarisations: a TM part, with E, as the
only (scalar) unknown, and which we treated in §3,
and a TE part, with the transverse field E as the un-
known, and which is the case of interest here. Hence
we assume that the electric field E and current source
Jv are entirely transverse (TE) to the z axis.

Next we assume that the cross section S is sub-
divided into a mesh of E triangular elements S¢, e =
1,2, ...,E, as in the meshing scheme of Fig. 9. The
cavity field is represented in terms of the bases by
(211), where N is the number of interior edges of the
triangular mesh and V, is a tangential component of E
at the midpoint of an interior edge with global DoF in-
dex n. The degree of freedom indices associated with
the mesh of Fig. 9 are illustrated in Fig. 20. In the lat-
ter figure, the vertex indices are the same as in Fig. 9,
but have been removed for clarity. Table 11 gives a
partial listing of the data structure needed to imple-
ment the mapping implied by Figs. 9 and 20 between
local and global degree of freedom indices associated
with interior edges. Note that the local index of an
edge in a triangular element is assumed to be the same
as that of its opposite vertex.

A positive reference direction must also be chosen
for the component of E along each edge. For conve-
nience, we assume that the reference direction for the
ith local basis function is always in the direction of the
corresponding edge vector &, i.e., directed in a coun-
terclockwise direction along the triangle’s boundary,
but to ensure continuity of tangential components at
an edge common to two triangles, the corresponding
global reference direction must be reversed for one
of the two triangles that share a degree of freedom.
Hence we relate the local basis to the global basis on
element S¢ as

Q,(p) =0ciQ(p), peS’, (219)

where 6} incorporates the sign accounting for the ref-
erence choice and is defined by

1, reference direction for edge 7,

element e, is parallel to ¢, (220)

[ . . .
—1, reference direction for edge 7,

element e is antiparallel to ¢;.

Note that this sign is incorporated into the index that
maps local to global indices in Table 11. The global
reference direction for an edge may be chosen arbi-
trarily or for convenience. As in Table 11, a common
scheme is to choose it in the direction of increasing
global indices of an edge’s bounding vertices.
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Figure 20 Edge degree of freedom indices corresponding to
mesh of Fig. 9.

Table 11 Partial Listing of Element Connection Data Cotre-
sponding to Figs. 9 and 20

Local nodes, element e
1 2 3
Global Global Global
e node no. node no. node no.
pof's | index por's | index Dofs | indo
1 9 11 10
1 ] -1 0 i 0 1 i 16
2 11 1 10
0 I 0 1 i 1 1 i -2
14 15 13 . 12
1 i 18 1 il 22 1 i -19
18 8 11 9
1 f -16 0 i 0 1 =15

With our assumption that the medium parameters
are constant in element e (u, = u¢, €, = €), we find that

element matrices corresponding to (214), (217) and
(218) are

Yi= ;’mf Il +jowoio; CF, (221)
r5=%<Vxﬂf;Vfo> (222)

and
Ci=¢ < Q507 >, (223)

respectively. The element excitation vector corre-
sponding to (213) is
I ==c¢ < QGJy > . (224)

In the next section, we develop local curl-conforming
basis functions €] defined on element e.

Development of Basis Functions

To construct basis functions on an element, we note
that an interpolatory basis appearing in (222} and
(223) should satisfy the following conditions:

o To model the curl to lowest order, V x f must be
a constant vector; hence £ must vary linearly within
an element.

o QO should have a tangential component along
edge i of element e, but a vanishing tangential com-
ponent along the two remaining edges.

The second condition may be satisfied if we assume
that Qf has the form

Q = f(p)b;,
where (p;, ¢;} are polar coordinates in the plane of the

element centred at vertex 7 and with associated unit
basis vectors (p;, d;). We note that if

fipi) = Cpi,

where C is a constant, the first condition will also be
satisfied since

(225)

(226)

e 1 d oo
VxQf = o do; [pifpi)| 2 = 2Ca. (227)
Hence,
Q= Cpid; = Claxp)pi = Cixp, (228)

where p; is the vector from vertex i to the point (p;, ;)
in the element. Finally, we note that along local edge
i, the magnitude of the component of p; normal to the
edge is the height of the triangle b; from edge i; hence

=t 2"" (229)
i
has a unit tangential component along edge i. Not-
ing that p; can be written in terms of normalised co-
ordinates and element edge vectors as p; = .18y —
&, 14.1, we also have, using results from Table §,

0 =3 (i1l —&i1bia)
1T hi

=4 (&is1VEi1 —§i-1V81), (230)
with curl given by
2. &.
Vxﬂf:;iz:EZ. (231)

Using (230) and (231}, we may now evaluate the ele-
ment matrices.

Evaluation of Element Matrices

From (231), the element matrix (7] (222) is easily
evaluated as

: @ ae a4
Til= e | @4 4 a6 (232)
&ao a0 &
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Similarly, we evaluate C; of (223) by noting that

ee
Ci= thS [§,~2+1 10112 ~28018i-16-1 - Gis1 +E2 11601 IZ] ds
H

) ﬁ (]2;_1 2= i1 + 161 2 )

6 4Ae
€ ?
= —*[3cotB;+cotB;,1+cotB;_1] (233)
12 [ 1 i+1 i—-11s
and that

Ee

Ci,ic1 = Fiihia Le [&z‘-@i(’«r&u -&i1&i1 [
+ &1l -6 —E2 by 'ei—l] ds
_ €616 (&-m 12+ 61 -4 = 2801 -6y )

1 4A¢
€ 0. .
= %(Cot 8; —cot 8,1 —cot 8;_1), (234

evaluated with the aid of (88), (90} and (96). Hence
the element matrix [Cf] is ‘

Ee

[C;] =G (cot81[R1]+cot8[R2]+cotB3[R3]), (235)

where

[ 3¢ -a6 -a4)

[Ril=|-aa & a4 |, (236)
|-aa ae & |
[ ¢ a6 as ]

Rol= |-a& 3¢ -8, (237)
| 68 -a6 &
[ ¢ ae -a4]

R3l=| @8 & -6 (238)
|-aa -a6 38 |

Numerical Results

Without means to incorporate radiation conditions,
we cannot yet solve TE scattering problems. Nev-
ertheless we can easily illustrate the methods of this
section by determining the eigenfrequencies for which
there exist source-free solutions for a closed TE con-
ducting cylinder. Thus, following the approach lead-
ing to (103), we determine the TE eigenfrequencies of
an air-filled square waveguide. These eigenfrequen-
cies are given by (x)%q = [52—"]2 (p* +q*) where ¢y is the
speed of light in air, a is the dimension of a side and
7,9=0,1,2, ... with p and g not both zero. The error
in the first five distinct eigenvalues is plotted versus the
number of subdivisions per side in Fig. 21.

Figure 21 Convergence of first five distinct TE eigenvalues of
a square waveguide.
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§10. Conducting Bodies: EFIE, 3D

In §2 and §7, we considered scattering by a con-
ducting cylinder illuminated by TM and TE polarised
incident fields, respectively. Here we treat the corre-
sponding three-dimensional problem using the elec-
tric field integral equation (EFIE) (Rao et al., 1982).
The scatterer is assumed to be a perfectly conducting
body of arbitrary shape with boundary S and illumi-
nated by an incident field E™. If S is an open surface,
then it also has a boundary C. For open surfaces, the
induced surface current density J is assumed to be a
sum of current densities on opposite sides of the sur-
face. Furthermore, following the discussion of §7, the
normal component of the total current must vanish at
C. Expressed in terms of potentials, (9)—(14), the scat-
tered electric field is

ES = —jwA ~ VO, (239)

where the magnetic vector and electric scalar poten-
tials are

A= ,ljs J(¢) Gir,r') dS’ (240)

and

o= ———1—J V' -J)Glr, ¢} dS,
N

e {(241)

respectively, and the three-dimensional Green’s func-
tion is

kR
" 4R’
where R = [c—r'|. The electric field integro-differential
equation for the induced current is obtained by requir-

ing that the total tangential electric field, E* + Ein,
vanish on the conductor surface:

[joA + V@, =EZ(r), reS.

Glr,r') (242)

(243)

The corresponding weak form of the equation is ob-
tained by testing it with a vector-valued weighting
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function A,,(r) defined on and tangent to S. Using
the identity V- (A, ®) = ®V-A,, +V®- A, and the
divergence theorem, the term involving the scalar po-
tential is integrated by parts to obtain the weak form

J0 <Az A> — <V Ay, @>=<An BN > re S, (244)

The boundary terms arising from integration by parts
in (244) vanish because the components of weighting
functions normal to C are assumed to vanish. This
assumption is consistent with our intention to use
the testing functions as basis functions that interpo-
late the normal components of total surface current
at triangle edges; these components vanish at surface
boundaries. With (240) and (241), we thus write the
integro-differential equation as

. 1
jou< Ay G,J > +iEé <V:Ay, GV ]>

= <AE" > res. (245)

We approximate the conductor surface S by a
mesh of planar triangles, with the eth triangle denoted
S¢. The resulting approximate surface S is continu-
ous and forms a piecewise linear approximation to
the surface S ~ § =UE | s,

Since (245) requires the divergence of the current,
we choose divergence-conforming bases A, to repre-
sent the current, i.e., bases with continuous normal
components across element boundaries. Otherwise
nonphysical line charges will appear at the element
boundaries. In fact, we choose the degrees of free-
dom for the current to be the normal component of
current at the midpoint of each nonboundary edge of
the mesh. Thus the surface current representation is
given by

N

JiO~ Y LA, (246)

n=1
where I, represents the component of current nor-
mal to an edge. The support of each basis is the pair
of triangles sharing the edge at which its interpola-
tion point is defined. Since the component of cur-
rent normal to boundary edges vanishes, we simply
do not associate basis functions with such edges. On
the other hand, where two or more conducting sur-
faces intersect, at least three triangles share a com-
mon edge along the intersection. To prevent a line
charge buildup at the edge, these surface current den-
sities must satisfy Kirchhoff’s current law; hence if
J surfaces intersect, there can only be J— 1 degrees
of freedom. The situation simply generalises to three
dimensions the discussion of §7, and the basis over-
lapping scheme described there is directly adapted to
this case.

Substituting (246) into (245), we obtain the matrix
system

[Zmn)lIn] = [Vin), (247)

where the system impedance matrix is

(Zonn] = 1L+ 5 Sl (248)
with inductance and elastance matrices
(Lonnl =11 [< A Glr,7'); A >] (249)
and
[Spin] = % [< V-Am, G(r,¥), V- A, >],  (250)

respectively. The excitation column vector is defined
as

Vin = [ < Am; B> ]. (251)

Construction of Bases

We express the global basis A, associated with DoF
index #, in terms of a local basis A{, the ith edge of
element S¢, as

Anl(r) =GSAS(T), re S, (252)

where 67 determines the global reference direction for
surface current crossing the 7th edge of S¢, generalis-
ing to triangles the definition (172) of §7 . For the
local bases, A{, the positive reference direction is al-
ways assumed to be out of the element.

Divergence-conforming bases must have continu-
ous normal components across element boundaries
so that nonphysical line charges do not appear there.
The additional requirement that the bases be inter-
polatory at element edges thus imposes the following
conditions on their construction:

¢ To model surface charge to lowest order, V- Af
must be constant; hence A must vary linearly within
an element.

o A should have a normal component along edge
i of element e, but a vanishing normal component
along the two remaining edges.

Note that these requirements are essentially dual to
those used in constructing curl-conforming bases in
§9. In fact, the required local bases in a triangle
are easily constructed as the cross product of local
curl-conforming bases and the triangle’s unit normal
vector

(Gir1€io1 —&im18i1)
b; ’

Al(r) = QS(r) x fi = (253)

with divergence

2

Al = =

V-Al(r) b

The definitions of the edge vectors and heights appear-
ing in these equations are given in Table 8.

(254)

The data structures of Tables 5 and 11 are readily
adapted to this problem. Since the problem is three-
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dimensional, an extra column is needed in Table 5 to
hold the z coordinates of the nodes. The element con-
nection data of Table 11 remain the same, except that
the sign on the DoF indices now refers to the reference
direction for the normal component of current at an
edge, with a positive or negative sign implying a refer-
ence direction out of or into the triangle, respectively.

Evaluation of Element Matrices

The element matrix accounts for all interactions be-
tween those bases whose support includes a given pair
of interacting triangles. Thus the element impedance

matrix associated with the global impedance matrix
(248) is defined as

it of

(L % [ i b
where each matrix element represents the interaction
between the ith basis of element ¢ and the jth basis

of element £. The element inductance and elastance
matrices are given by

[z | =jwofs; (255)

](D

L= ;1“ J Af(r)-Af(r')G(r,r’)dS’dS] (256)
se ) sf !
and
[s7] = 1 U J V-Af(r)G(r,r')V'.Af(r')ds’ds],(257)
K € |Jse)sf /
respectively. The element excitation column vector
associated with the corresponding global vector {251)
is given by
[ve] = [ij Af~Ei“cdS]. (258)
Se

Making use of (253), the element inductance matrix
is given by

f H f f f . ef
[Le ] = W [ee 1 e 1Wf+1,]+1 e e +1 Vst ,i—1
fou o
— 0+ G il ] (259)
where \uflf is the potential integral

of . fJ‘lJAl—F’ZJlJ'l_EZ
S =4A°A
Vi oJo Jolo s

" 4nR
x&' d&} d€) dE1dE;

o TkR

(260)
and

R= |r§§1 +158) +1583 —r{&'l —ré{;z —r3E_,' | (261)

Turning to the evaluation of S;f , Eq. (257), we use
(254) and recall that &1 +&,+&3 =& +E,+E5=1to
obtain the element elastance matrix

S 3

i/ Eh'h’k 10-1

(262)

The evaluation of element matrices thus reduces
to the problem of evaluating the scalar potential
integrals (260). For e #f, the Gaussian quadrature
rules of Table 9 may be used to evaluate both the
inner pair of integrals over the source triangle and
the outer pair of integrals over the observation tri-
angle. Since triangles must be electrically small for
good accuracy—typically no larger than an eighth of
a wavelength on a side—the potential is slowly vary-
ing over a triangle and hence a one-point rule for the
outer surface integral is often both efficient and suf-
ficiently accurate. The quadrature order needed for
good accuracy in evaluating the inner integral gener-
ally depends on the relative distance between source
and observation points. If an observation point is
very close to the source triangle, however, it may be
necessary to appropriately adapt the scheme below
for the source point integration.

For e = f, the observation points are on the source
triangle and the potential integral (260) becomes

v =t [0 1R e e e

0

K
442 Y wp &1, (263)
kzl
where the Gaussian quadrature rules of Table 9 are
used to evaluate the outer pair of integrals over ob-
servation coordinates, and the remaining inner inte-

gral is
(k) _ 115 (kY s \gr qer gut
I _JOL) Gk, r ) de ey, (264)
with
—7k|r®) ~p'}
AN
G(r ,r)_4n[r(k)_r,[ (265)
and
b =g ey e (266)

The remaining integral, (264), contains a singularity
since R vanishes when observation and source points
coincide. Two separate approaches may be used to
treat this case, one a singularity subtraction method
and the other a singularity cancellation method. In
the subtraction approach, we note that the integrand
approaches &}/ (47|r'® —1']) as ¢’ approaches &), We
merely subtract this factor from the integrand of (264)
and add it back as a separate integral, yielding

(k) -5 e_]klr “rl " dE dE!
Y= T d
4 Jojo 4grik) § 45145
11-8 1
L dE dEL,. 267
Jolo o S 08

The integrand of the first integral in (267) is bounded
and may now be integrated by the rules of Table 9,
while the last integral can be integrated in closed form
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(Wilton et al., 1984). Although quite widely used and
simple to apply, this approach does have drawbacks.
Although the integrand of the first term of (267) is
bounded, there remain singularities in its derivatives
at the observation point, violating the underlying as-
sumption of the Gaussian scheme that the integrand is
well modelled by a polynomial. Consequently, a high-
order quadrature—at least the seven-point scheme of
Table 9—is required for only moderate accuracy; high
accuracy is often difficult to obtain. Fortunately, this
term is usually dominated by the analytically exact
contribution of the second integral, but one must take
care in evaluating expressions for the latter for very
narrow triangles or for observation points near the
edges. Finally, there also exist Green’s functions for
which the asymptotic form of the singularity in the
integrand cannot be integrated in closed form.

The singularity cancellation method suffers none
of these deficiencies, although high accuracy may also
require many sampling points. In this method, we in-
troduce a transformation of coordinates such that the
Jacobian of the transformation cancels the singularity.
Figure 22 shows a source triangle with an interior ob-
servation point at one of the Gaussian points of {263).

The sample point subdivides the triangle into sub-
triangles, one of which is shown opposite vertex
o. The area coordinates within this subtriangle are
mapped into an intermediate triangle with unit vertex
coordinates and then to a unit square by the succes-
sive transformations

k
gu=t']
(k)
2x+1 = E—'a+1§,1, +§,2,

, k
a1 :éix—)lgll,+ 3 (268)

Figure 22 Subtriangle mapped to intermediate triangle and to
unit square.

Coordinates
o ACRIURILY
at sample point

(a)

Mo

(b) ©

and
& =m]
5= (1-1))m;
5=(1-m7) (1-mj),
for which we find that
dg, dey = e der dey = e (1-m))dndny. (270)

Note that the interior vertex of the original subtri-
angle, where the singularity in the integrand occurs,
is mapped onto the line nj = 1, where the vanishing
factor (1-mj) in (270) cancels the singularity. The in-
tegral (264) may now be evaluated as a sum over the
transformed subtriangles,

(269)

) _ e el [T (k) g (4 o \ et g
TR J, ], G408 (1) iy, (271)
where in each subtriangle integral,
=8 M ey (Bl + (1)
s [Elme (1-m) (1-m)| @72)
and
& = £, 48 (L =My + 8, 0a(l~ M)A M. (273)

In (273), we have used the Kronecker delta,
i=j,

1,
5i/={ o
0, 4.

The double integral of (271) may be evaluated by
successively applying the one-dimensional Gauss—
Legendre rules of Table 3 to each integral.

(274)

For the excitation element vector (251), consider a
plane wave incident from spherical coordinate angles

(einc, q)inc ),
B = Eg e Rk (275)
where
Kki"® = —%cos¢'™ sin O — ¥sin 6™ sin 6" —Zcos 6™ (276)
and Ey is a complex constant vector with components

. . . AN
only along the spherical coordinate unit vectors 8

and ¢ . The global system excitation vector is thus
< AmE™ > | =Eo- [Ap(-k)],  277)
where

[i\m(ﬁ)} - U Aylr)eiker dS] (278)
S

is a vector-valued column vector of Fourier trans-

forms of the bases. Thus the element excitation vector

corresponding to (258) is

[cf < AEine >} - 6%Eq - {[xf(—fem)], (279)
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where

[[xf(f()] = Us Af(r)eikk'rdS] (280)
is a column vector of Fourier transforms of the local
bases on element e. Elements of the column vector
may be evaluated either analytically (Lee and Mittra,
1983) or by numerical quadrature, and assembled
into the system transform column vector. Note that
factoring the incident field amplitude from the sys-
tem excitation vector in {277) enables us to use the
Fourier transform algorithm both in the construction
of the excitation vector and in the computation of far

fields below.

Evaluation of Far Fields

The scattered far electric field at a distance r and angle
{6, 0) is given by (17) and (20):

sc__j(’)_# —k7 { A8 2 heh J ke J ot
B=-re (99+¢¢) Jw)erds' 281)

Substituting in the approximation (246) for the sur-
face current J yields

: N
JOU _ikr (a8 . 44 J ke ot
EX=———e {00+ }- E 1 AT dS
4nr ( * ) = "ls n(r')e

oLt (86+38) - [Aui)] 1), (282)

where the unit vector in the observation direction is

(283)

f=%cosdsinB+ysindsin®+Zcosod

and the superscript t denotes the transpose. Note that
we use the column vector of Fourier transforms of the
bases defined in {278), but with the transform variable
now as the observation angle rather than the incident
angle.

Numerical Results

Figure 23 shows the current induced on a conducting
sphere illuminated by a linearly polarised plane wave
incident from 6 = 180°. The cut for Jg is taken in the
plane containing the incident electric field vector; that
for J is in the plane containing the incident magnetic
field. Note that the mesh density at low frequencies
must be sufficient to adequately model the curvature
and surface area; at higher frequencies, it must also
provide sufficient sampling density per wavelength.
Also shown in the figure for comparison are results
from the MFIE approach of the following section.

§11. Conducting Bodies: MFIE, 3D

An alternative to the electric field integral equation for
three-dimensional problems is the MFIE. In the case

Figure 23 Current (a) in x—z plane and (b) in the y—z plane on
conducting sphere illuminated by a plane wave.
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of the MFIE, the surface S of the conducting scatterer
must be closed. The scattered magnetic field is related
to the induced surface current J via

e = lyxa,
u

(284)
where the magnetic vector potential is given by (240)
and (242). The total magnetic field must vanish just
inside the conductor surface:

fi x H(J) + A x H™ = 0, religs. (285)
T

Using (37) and (39), this becomes

J(z—r) +ix J JIX)x VG(r,r')dS =i x H™, resS, (286)
s
where G{r,1') is given by (242).

We may use the same triangular element represen-
tation and data structure for S as in §10, except that
S must now be a closed surface. We also approxi-
mate ] using (246), substitute it into (286) and test
the resulting equation with A,,, yielding

(Bl In] = [1'], (287)
where
1 A
Brn =5 < AmsAn > +j5 L(Am(r) x 1)
. (An(r’) x VGir, r’)) ds’ds. {288)
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Elements of the excitation column vector in (287) are
given by
1D =< A,,zh x HI%C > (289)

Solving (287) vyields the current coefficients, and

hence, from {246), the surface current density J.

Evaluation of Element Matrices

The element matrix corresponding to {288) is given
by

%% < AGAS > e=f
B - of [ fsf( ) x A1) (290)
(Af( )xVG(, ))ds'ds, e #f,

where the reference direction factors 6] merely gener-
alise to triangles the definition (172).

From (253), which relates divergence- and curl-
conforming bases on a surface, and the similarity of
the symmetric product in {(290) to that of (223), one
easily verifies that the case e = f in (290) reduces to

fof C;;

ce (291)
7 e

where C7 is given in (235) and following. We note
that in the double surface integral (290},

—jkR
(1+kR)e R

VG(I', I',) == R2‘ 3

(292)
where R = R . The element excitation column vector
corresponding to (289) is given by

197 2 6; < A% A x HI% > (293)

H

Both (290) and (293) may be evaluated by numerical
quadrature methods described in §10. Since the ge-
ometry and current representations are the same as in
§10, we can evaluate the far field using {282).

Numerical results comparing the MFIE and EFIE
solutions for scattering by a conducting sphere are
presented in Fig. 23.

§12. Dielectric Bodies: PMCHW For-
mulation, 3D

In this section, we consider a homogeneous dielectric
scatterer with closed boundary S. The region exterior
to S is denoted V* and its interior is V™. The medium
parameters in V* are p*,e*, respectively, and may
be complex-valued with negative imaginary parts for
lossy media. A triangular surface patch model of S
is assumed using the data structure described in §10.
To represent the exterior region fields using the equiv-
alence principle, the scatterer is replaced by equiva-
lent electric and magnetic surface currents J =1 x H

and M = E x i, respectively, where @i is the outward
unit surface normal. The total fields, i.e., the sum of
fields E"°, H™ incident from the exterior and the cor-
responding scattered electric and magnetic fields radi-
ated by the equivalent currents, vanish in Y~. Hence,
in the exterior region field representation, the exte-
rior medium parameters may be extended into the
interior without disturbing the fields. Similarly, a rep-
resentation of the fields in V™ is obtained by placing
currents —J and —M on S; since the incident field is
assumed incident from the exterior, its sources and
corresponding fields are not included in the interior
representation. The currents —] and —M radiate a null
field in Y+, and hence the interior medium parameters
may be extended to the exterior. With the extension
of medium parameters into the complementary null
field regions, the equivalent currents of both interior
and exterior representations reside finally in homo-
geneous media, and hence the homogeneous medium
Green’s function (14) may be employed in potential
representations for the corresponding fields.

The null field conditions described above can be
written in terms of the incident fields and scattered

fields produced by the equivalent currents as {Mautz
and Harrington, 1979)

E<(J,M)+E"™ =0, reV, (294)
H*(J,M)+H™ =0, reV-, (295)

and
E*(-],-M)=0, reV*, (296)
H*(-J, -M)=0, reV*, (297)

or in equivalent weak forms using tangential vector
testing functions A,

< Ap;ES(, M) > + < Ap; B > = 0, relims, (298)
T

< A HE(,M) > + < A, H™ > =0, re 1%15, (299)
T
and
< Am;EX(=], -M)> =0, re 1&;25, (300)
T
< A H® (=], = M) > =0, relilrgs. (301)
T.

Equations (294)-(301) implicitly assume potential
representations for the scattered fields employing the
medium parameters of the region complementary to
that for which the null field condition holds.

Any pair of equations formed as linearly indepen-
dent combinations of (298)—(301) constitutes a pos-
sible formulation for a coupled system of integral
equations for the unknown surface currents J and M.
Not all formulations have unique solutions, however.
One choice that does is the PMCHW formulation,
named from the initials of the five researchers who,
in three separate articles, first applied it {Mautz and
Harrington, 1979). It is obtained by equating (298) to
(300) and (299) to (301), and is equivalent to requiring
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that both electric and magnetic fields be continuous ac-
ross S. With this choice, we expand both the electric
and magnetic currents in the basis functions of §10,

N
J=nxH= ZInAn(r),

n=1

(302)

N
M=Exn= Z VaAy(1), (303)

n=1

and substitute the result into the PMCHW equations,
using (37)—(42) to obtain the coupled system of equa-
tions (Umashankar et al., 1986)

(Zinn+ Zomn) [~ Bm=Boal | [1n ] _ [Vir€
B+ Brn] Vot Vi) | V]~ L1 | O

Elements of the impedance submatrices in (304) are

defined as

. 1
Zign = JOLigy + /.;,Sim (305)
where
L, =1 < Am; G55 A, >, (306)
1

Sin =z < V-Am, G5V Ay >, (307)

and the media Green’s functions are

+ J e_ikiR !

G (r,r)=m, R=[r-r], (308)

with k* and k£~ the wavenumbers of the exterior and
interior media, respectively. The corresponding ele-
ment impedance matrices are given by (255), (256)
and (257) with the Green’s function G replaced by
G* or G, as appropriate.

The admittance matrices in (304) are dual to the
impedance matrices, and are simply related to one an-
other as

+ - Z:rtnn

(309)

where * and N~ are the intrinsic impedances of the
exterior and interior media, respectively.

The matrix elements B, in (304) are given by
- JS JS Anlr)- (An(t) x VGE(r, 1)) dS'dS, (310)

for which the corresponding element matrices can be
evaluated by the methods of §10, and where VG* is
the same as (292) with G replaced by G* or G, as
appropriate.

Evaluation of Far Fields

The vector potentials in the far field are, from {17),
(18), (302) and (303},

B ik 1y iR g o
A=t i 'J K g
el MU

= T [AnE)] 1] (311)

and
€ iy R ot
F= S o JM(r)e’ ds
4mr S
€ A BrNR | ¢
=1 C T An®)] [Vl (312)
where
f=%cos$sin®+ysindsin®+zcosd (313)

is the radial unit vector in the observation direction

(8, ) in spherical coordinates, and
Af) = J An(D)eX T dst (314)

s

is the Fourier transform of the vector basis functions.

Equation (314) can either be integrated numerically

or in closed form (Lee and Mittra, 1983). In terms of

the potentials, the far fields are given by (20) and (21).

Numerical Results

Figure 24 shows the two components of the total mag-
netic field on the surface of a dielectric sphere. The il-
lumination is by a plane wave incident from 6 = 180°;
the relative permittivity of the sphere is €, = 6.0 and
its radius is a = 0.125Ag, where A is the wavelength
in free space. The fields along the two cuts are in
good agreement with those of an analytical solution
for sphere scattering. The results are also compared
with those obtained from a hybrid approach using

Figure 24 Total magnetic fields on the surface of a dielectric
sphere.
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both integral and wave equations and which is dis-
cussed in §14. The radar cross section of the sphere
is shown in Fig. 25.

§13. Inhomogeneous Bodies: Elec-

tric Field Wave Equation, 3D

The finite element approach in three dimensions fol-
lows closely that of two dimensions for the TE po-
larisation (§9). We assume a volumetric region V
with a closed, conducting boundary S forming a cav-
ity. We also assume that V is subdivided into a num-
ber of tetrahedrons chosen to provide an approxi-
mation V to the region. That is, if the eth tetra-
hedron is V¢, then ¥ ~ ¥V = U5 | V%, A tetrahedral
mesh is defined by the position vectors of the ver-
tices of the tetrahedrons plus a description of the
connectivity between vertices to form tetrahedrons.
Each vertex of a tetrahedron has both a global in-
dex and local index i =1,2,3 or 4. Each face has
the same local index as its vertex opposite. As in
Fig. 26, local vertices are assumed numbered such
that the orientation induced for face 4 when its ver-
tices are traversed in the order 1, 2, 3 produces, using
the right-hand rule, an outward normal to the face.

Figure 256 Radar cross section of a dielectric sphere.
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Figure 26 Local vertex indices and reference directions for a
tetrahedron.

To label edges it is convenient to employ a double-
indexing scheme in which the index merely lists the
two vertices bounding the edge. Thus the edges of
the tetrahedron of Fig. 26 are locally indexed 12, 13,
14,23, 24 and 34. Asin §9, the unknowns are taken
as the tangential components of E at the edge mid-
points, with a local reference direction assumed from
the lowest to the highest local vertex index, as shown
in the figure. The complete meshing data structure
thus comgprises the following tables:

o A table similar to Table 5 listing the coordinates
corresponding to each of the global indices.

o A table similar to Table 6 giving the global ver-
tex index corresponding to each of the four local ver-
tices, and listing the number of degrees of freedom
and the global degree of freedom index for each of
the six edges of the tetrahedron in the order 12, 13,
14,23, 24, 34.

If there is no degree of freedom associated with an
edge (e.g., it corresponds to an edge lying on the con-
ducting boundary S where the tangential electric field
is zero), then the latter table lists both the number of
degrees of freedom and the index as zero. Otherwise,
a sign is included with the degree of freedom index
to indicate if the local reference direction is the same
as {positive sign) or opposite (negative sign) that of a
global reference direction chosen for the edge.

The initial development for obtaining the system
matrices is identical to that described in §9 and is
given by Eqs. (207)—(218), without the specialisation
to two dimensions. Modifications needed to accom-
modate a tetrahedral mesh and bases are given in the
following.

Volume Coordinates

Similar to the use of normalised area coordinates on
triangles, we introduce a set of normalised volume
coordinates for parameterising integrals over tetra-
hedrons. Let the position vector r designate a point
within a tetrahedron.

As Fig. 27 shows, the point defines a subdivision
of the tetrahedron into four tetrahedral subvolumes.
If the volume of the subvolume opposite vertex 7 is V;,
then normalised volume coordinates are defined as

V.

E,,i = 7;)

where V¢ is the volume of the original tetrahedral el-

ement e. The volumes of the subregions must sum to
Ve, and hence the coordinates satisfy

E1+82+83+84=1;

Le., only three of the coordinates are independent.
Clearly, & = 0 at face 7 and is unity at vertex i
of the tetrahedron. Constant coordinate surfaces of

i=1,2,3,4, (315)

(316)
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Figure 27 Subdivision of a tetrahedron into four tetrahedrons.

a normalised coordinate are parallel to the face
representing its zero coordinate. This parameterisa-
tion defines a mapping from each tetrahedron onto a
standard parent tetrahedron. Since the coordinate &;
varies linearly from zero at face 7 to unity at vertex i,
it is also a local linear interpolation function. Points
within a tetrahedron thus may be parameterised as a
linear interpolation of its vertex coordinates as

r=r{&1 +1582 + 1583 + 1584, (317)
where r{ is the position vector of the ith vertex of el-
ement e.

Table 12 summarises the computation of an ele-
ment tetrahedron’s volume V¥, edge vectors ¢;, height
vectors h; and coordinate gradients VE;. These quan-
tities are also depicted in Fig. 26, and are used in eval-
uating elements matrices for tetrahedral elements.

The differential element of volume in volume coor-
dinates is given by

Jr ar

s (58 5 ) e deas e

= €14 - (€24 x 934) Id§1 d&z,d83

= 6V°dE;dt;, d&y, J°d&;d&dEs, i#j#k,

dv =

(318)

Table 12 Geometrical Quantities Defined on Tetrahedral Ele-
ments

Edge vectors G =r7—r75 4 = 18l;

e,,=§f Jitie (1,2, 3,4)
Ve = 14 -(Bogxlag
Aihj
= —%’-,
A, area of face i,
= height of vertex i

Ve = g
v&z - eﬂexem ,
V&a = glé%%i B

V& = -V - V& - V&3

Volume

Coordinate gradients,

V& = - h,

and hence an integral over a tetrahedral element may
be expressed in terms of an integral over a parent
element as

1p1-8 (1-8-8 o
[ fmdv=eve| [ [ T fodeideae, i#)#k

(319)

K
k k k k
26V Y wpfrsEl 4 r5E)Y 4 n5e N 4 nsEl),

k=1

where the last line is a K-point rule for numeri-
cal integration over a tetrahedron. Sample points
and weighting coefficients for K = 1,4 are given in
Table 13 (Hammer et al., 1956). Note that to ob-
tain numerically exact results for such integrals, one
should choose quadrature schemes whose error or-
der is higher than the highest order of the coordinate
products appearing in the integrand.

Basis Functions

An edge-based basis function associated with edge ij
of the eth tetrahedron is given by

Qf = 4 (&:VE - VE,), (320)
with curl given by
Vﬂe =24,VE; x VE; = (’,,, 70 2,, (321)

- 3Ve

Equation (320) follows directly from (230) if the fol-
lowing geometrical identification is made. First we
note that a tetrahedron may be embedded in an infi-
nite cylinder of triangular cross section such that faces
i and j of the tetrahedron lie in two sides of the cylin-
der. The edge formed by the intersection of faces i
and j lies along an edge of the cylinder, and edge &;
connecting vertices ¢ and j lies in the third side of the
cylinder. The right-hand side of (230) is a basis func-
tion defined on the cylinder cross section that may be
restricted to the tetrahedron and renormalised such
that its tangential component along edge &; is unity.
This construction leads directly to (320).

Table 13 Sample Points and Weighting Coefficients for K-Point
Quadrature on Tetrahedrons

Sample points, ( 5"‘),& ) Weights, w
(889 =180 -7 -5")
K=1, error O(&?)
{0.25000000,0.25000000,0.25000000) 0.16666667
K=4, error O(&3)
(0.58541020, 0.13819660, 0.13819660) 0.041666667
(0.13819660, 0.58541020, 0.13819660) ' 0.041666667
(0.13819660, 0.13819660, 0.58541020) 0.041666667
(0.13819660, 0.13819660, 0.13819660) 0.041666667
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With bases now defined, the element matrices cor-
responding to (214), (217) and (218) are

€ <€
€ = G——iickel“e iwciot ,C¢ (322)
ke~ g i ko900, ko>
with element reciprocal inductance matrix
1
e e, e
ri;’,kez ;To;l—f<VXQif’VXng>’ (323)
and element capacitance matrix
C;;,ke = gges < Qf/; bo> - (324)

The term o} incorporates a sign accounting for the
reference direction associated with the edge ij and is

defined as

1, reference direction for edge 7,

element ¢, is parallel to €;, (325)

" —1, reference direction for edge i,

element e, is antiparallel to £;.

The volume integrals implied by the symmetric prod-
ucts in (323) and (324) can be evaluated numerically
using the four-point formula of Table 13 or analyti-
cally as follows.

Evaluation of Element Matrices

From (321) and (323), the elements of the matrix

[T}, o) are easily evaluated as

Gibee
fke= gye bi-ee- (326)
By repeated use of the identity
ogBe¥es g1, 6 VEUPIYIS!
Jve 818283544V = (o+B+y+0+3)1° (327)

we may similarly evaluate C;; ,, as

Cooko= <G8 (EVE ~EVE) - (5VEr—EVEL)AV

€80 oV°
= L [(1+ 84V - Vo~ (1+ 8,0V VE

20
—(1+8)VE; - VEo+ (1+8i9)VE; - VE], (328)

where §;; is the Kronecker delta defined in (274).

The determination of interior eigenvalues of a
three-dimensional conducting cavity follows the same
procedure discussed in §3 and §9. In the following
section, we combine the wave equation of this section
with an integral equation on the boundary to obtain
a hybrid approach to scattering problems.

§14. Inhomogeneous Bodies in Open

Regions: Hybrid FEM/IE, 3D

The principal difficulty in applying the finite element
method to the wave equation in unbounded regions
is that the mesh must somehow be terminated and

radiation conditions applied at the termination.
When a bounded, inhomogeneous scatterer is embed-
ded in an unbounded homogeneous region, a hybrid
finite element method/integral equation (FEM/IE)
approach may be used to terminate the mesh. The
equivalence theorem (§1) can be used to formulate the
approach by setting up equivalent electric and mag-
netic currents on a surface containing the inhomo-
geneity and separating the bounded and unbounded
regions. The equivalent currents may be used with
potentials to represent the fields exterior to the in-
homogeneity, and serve to isolate the exterior and
interior regions. An integral equation involving the
equivalent currents is set up at the boundary between
the regions. The integral equation then couples the in-
terior and exterior regions by relating the equivalent
currents to boundary fields that appear in the wave
equation describing the interior fields. The radiation
condition is thus implicitly enforced through the use
of Green’s functions in the potential representations
of the exterior fields.

We assume that the inhomogeneous region is con-
tained inside a bounded volume V with boundary S
and unit outward normal i. The region exterior to V
is assumed to be free space.

Inside ¥, we combine (208) and (209) to obtain the
weak form of the wave equation,

< Vx&,,; p;1~VxE> - k(2)< Q,;¢€,-E>
—iwuoj Q- (i x H)dS = —jop0 < L]y > .(329)
S

Note the appearance of the tangential magnetic field
fi x H at the surface. In the hybrid formulation, this
field is not known a priori. Furthermore, we cannot
assume that i x £3,,, vanishes there since the electric
field does not and therefore, its basis functions €2,
do not. An integral equation provides the missing in-
formation for relating the unknown electric and mag-
netic fields on S.

To represent the total fields in the region outside
S, we set up equivalent electric and magnetic surface
currents,

J=fixH, M=Exf, (330)

where E and H are the electric and magnetic fields on
S, respectively. We obtain the required integral equa-
tion by recognising that the total fields inside ¥ must
vanish. Thus, in particular, E = E*+E™® = 0 just inside
S, where E™ is the incident field and E* is the field
scattered by the inhomogeneity. Testing this equation
with tangential basis functions A,, on S, we obtain a
weak form of the equality,

< A B, M) > + < Ay B >=0, re lims. (331)
T

When E*¢ is expressed in terms of potential inte-
grals using (9) and (12), Eq. (331) yields the desired
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integral equation. With the definitions {(330), we wish
to solve the coupled pair of equations (329) and (331).

We now assume that V is approximated as a mesh
of tetrahedral elements V¢. The boundary S of the
mesh is the set of triangular faces of tetrahedrons
making up the boundary of V. A data structure for
representing the mesh combines that for triangular
meshes in §9 with that for tetrahedral meshes in §13.

Curl-conforming basis/testing functions £2,(r) are
used to represent the electric field,

N
E= Z Vn Qn(r>,

n=1

(332)

in ¥V and on S. As in §13, Q, has a unit tangential
component at the centre of the edge with DoF index
n of the mesh; the tangential component of E there is
V... However in contrast to the cavity problem of §13,
E does not generally vanish on S. Nevertheless it is
convenient to partition the degrees of freedom V,, into
a list with the first Ny unknowns VY all interior to V
and the remaining Ns unknowns V3 on the boundary
S, so that we write the total field interior to ¥ and on
S as

Ny Ns
E=Y VVQu(r)+ Y Vi Onpunlr), reV,S. (333)

n=1

In view of (330) and (333), we thus have

n=1

Ns NS
M= Y VilQNyen(t) x 1] = Y, Vi Aulr), €S, (334)
n=1

n=1

where the easily verified identity Qny.+n xi= A, 0n S
has been used.

Finally, we express the equivalent electric current
in terms of divergence-conforming bases A, defined
on the set of triangles (i.e., the boundary faces of the
tetrahedrons) comprising the boundary S of V as

Ng
J=Y IS Au(r), res. (335)
n=1
Substituting (333), (334) and (335) into (329) and
(331), and assuming the source current Jy is zero in
V for scattering problems, we thus obtain the parti-
tioned matrix system

(yor] [yysl o1 || [vY] [0]
[Yor] [Yaml [wa) | | [Val|=| (01 [, (336)
(01 [-Baml [Zam]) | | (5] [Vine]

which must be solved for the unknowns V), V5 and
I.
The admittance matrices in (336) arise from the

wave equation; they are sparse matrices whose ele-
ments, assuming an isotropic medium, are defined as

YV = ]lw <Vx Qi 'V x Q> 40 < Qs >, (337)

1
YoS = @< VX Qs 11V X Qi >

+]0 < Q3 eQNypan >, (338)
Yo = /lm < VX ONpamst 1V X Q,; >
+70 < Ny €€y > (339)
and
Vi = < VX OV X Dy >
+]0O < QN €QUNpin > . (340)

Equations (337)-(340) all give rise to element admit-
tance matrices of the same form. Assuming constant
medium parameters within each element, these matri-
ces are given by (322)-(324).

The impedance matrix [Z;5] in (336) represents
the electric field produced by the equivalent electric
surface current. Assuming the external medium is free
space, the impedance matrix is a full matrix with ele-
ments

anﬁ =jouy < Ap; G, Ay > +

<V -Qu, G, Ay>,(341)

jweg
for which the corresponding element matrices are
given by (255)—(257) with u=pg and € = €.

The matrix [B5] is the same as that relating elec-

tric currents to magnetic fields and is given in §11,
Eq. (288), as

ss =_% < Apsiix Ay > +J J AmD) - (An(r)

SJs

xVG(r,r')) dS'dS. (342)

However, here we want the dual operator that relates

source magnetic currents to electric fields; these oper-

ators differ only by a sign, which accounts for the neg-

ative sign appearing with By, in (336). The element

matrix corresponding to (342} is defined in (290).
Finally, we have

SS
Y = — < ONpams Au >

< AXA AL, (343)
for which the associated element matrix,
y;:—cfcf< fix AfAS >, (344)

may be evaluated either numerically or analytically
following the procedure used for (223). The exci-
tation matrix [V.2¢] is given by the right-hand side
of (251) and has the corresponding element matrix
(258).

As an alternative formulation, we can enforce the
condition that the magnetic field vanish just inside the
surface S containing the equivalent currents:

< Ap;HS(,M) > + < Ay H™ >=0, re liTrgs. (345)
by
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Replacing (331) with (345) and (333) with
Nv Ns
H=Y I} Qu(0)+ Y I Onyenlr), reV,S, (346)
n=1 n=1

respectively, and again carrying out the above proce-
dure yields

[(YV2] [Yos] [0]

SV 5SS SS [VX] [O]
(Y] [Y@n] ol [ [vs] =] 101 |, ©347)
o |4 | e ] L] [
with
[0¢ — ¢ A HI?C > (348)

There exist resonant frequencies for which these for-
mulations do not have unique solutions (Pearson
et al., 1992), and a number of remedies for
this nonuniqueness problem have been proposed
{Silvester and Pelosi, 1994). The far fields are those
radiated by the equivalent currents J and M, and are
given by (311)—(314). Total magnetic fields computed
on the surface of a sphere by the hybrid method are
compared to those obtained from the integral equa-
tion formulation and analytical solution in Fig. 24.

§15. Extending the Methods

Composite Geometries

By employing them as basic building blocks, we
may extend the numerical techniques discussed so
far to more complex situations. To illustrate, con-
sider a composite scatterer comprising a collection
of different homogeneous materials and conductors
{Medgyesi-Mitshang and Putnam, 1984). A key con-
cept in setting up these problems is use of the equiva-
lence principle to replace each bounded homogeneous
region by an unbounded homogeneous region with
equivalent sources on the original boundary. That is,
the {closed) boundary of a homogeneous material re-
gion is taken as the support for equivalent surface
currents ] and M that, together with the indepen-
dent sources in the region, reproduce the original
fields within the region and produce null fields out-
side. The homogeneous material parameters within
the region may thus be extended into the null field re-
gion without disturbing the original fields, and hence
potential integrals with homogeneous media Green’s
functions may be used to represent fields in the region.
This field equivalence may be constructed for each
separate homogeneous region. The equivalent cur-
rents on opposite sides of the region boundaries are
simply negatives of one another wherever the original
tangential fields were continuous. Thus an unknown

pair of equivalent electric and magnetic currents exists
at every material interface. Conductors, on the other
hand, are replaced by their surface equivalent elec-
tric currents, with separate electric currents on op-
posite sides for conductors at an interface between
different homogeneous media. For conductors ly-
ing entirely within a homogeneous region, the net
sum of these currents may be taken as the equiva-
lent current. Coupled integral equations are obtained
for the equivalent surface current(s) at each bound-
ary by (1) enforcing the continuity of tangential fields
across each material interface and (2) forcing the elec-
tric field to vanish on conductors. Inhomogeneous or
composite groups of piecewise homogeneous regions
may also be included in this scheme if one requires
that fields in such regions satisfy the vector wave
equation. The wave equation relates interior fields
throughout a volume to its boundary fields, which in
turn couples to an integral equation at the boundary
(Volakis et al., 1997, 1998). Other useful but less
straightforward representations for these composite
problems also exist (Glisson, 1984; Yeung, 1999), but
they are not described here.

Apertures

Planar Screens  Apertures in planar ground screens
may be treated by slightly extending the methods of
earlier sections. Consider an aperture A located in
an infinite conducting ground plane at z = 0. The ho-
mogeneous half-spaces above and below the ground
plane may be filled with different materials. An in-
cident magnetic field H™, defined as the field that
would exist without the screen and with the upper
medium filling all space, is incident from above the
aperture. The tangential components of the unknown
aperture electric and magnetic fields are (E 4, H4). We
form an equivalent problem by first shorting the aper-
ture and placing on the shorted conductor a mag-
netic current M = E 4 x 2 just above the ground screen
(z=07%), as illustrated in Fig. 28a. A magnetic current
—M is placed just below the ground screen (z=07).

Note that the shorted ground screen isolates the
upper and lower half-spaces, V* and V™, respectively.
The ground plane also shorts the electric field in the
aperture, but the magnetic currentsat z=0%and z=0"
are chosen to restore the original electric field just
above and below the currents, respectively. For deter-
mining fields in the upper half-space, all quantities—
the upper magnetic current, the material media and
the sources of the incident field—are imaged in the
ground screen. This results in the equivalent system
shown in Fig. 28b whose sources reside in an un-
bounded homogeneous medium. Thus potentials em-
ploying homogeneous medium Green’s functions can
be used to represent the fields in the upper half-space.
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Figure 28 Aperture (a) replaced by equivalent magnetic cur-
rents; images in ground plane form (b) upper haif-space and (c)
lower half-space equivalences.
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Similarly, imaging the lower half-space problem re-
sults in the equivalent system of Fig. 28c.

Although M is unknown, the use of equal but op-
positely directed magnetic currents on opposing sides
of the screen guarantees that the electric field is con-
tinuous through the aperture; an integral equation for
M is obtained by weak enforcement of continuity of

the tangential magnetic field through the aperture,
< Ap, HY >=< Ay, H >, (349)

where the tangential magnetic field in the aperture in
the upper half-space is

H?, = —2[joF* (M) + V¥* (M)]an + 2HZS,  (350)
and in the lower half-space is
H, = 2[joF~ (M) + V¥~ (M)]an- (351)
The potentials in {350) and (351) are
FE(M) = eJA M(r)GE(r, 1) dS’, (352)
PE(M) = —ij V-M({)GE(r,f)dS,  (353)
joula
and the Green’s function is
G(r,r') = ﬂ, (354)
4nR

where k* and k= are wavenumbers in the original
upper and lower half-spaces, respectively. Note the
various factors of 2 arising from imaging (1) the mag-
netic current and (2) the magnetic incident field in
the ground plane. Also note the negative sign in the
relation between fields and potentials in (351) that
arises because —M is the source in the lower half-space
equivalence. If the aperture is triangulated and mag-
netic surface current is represented as

N
M(r)= Y VaAulr), reA4, (355)
n=1

where A, is defined as in §10, Egs. (349)—(355) can
be combined to yield the system matrix equation

[Y;m + Yr_nn] [Va] = [Im]. (356)

One readily determines the element matrices corre-
sponding to system matrix (356) to be

e
H

v < jwotol G + %p;ef ) (357)
where
CET - et < AGGH AL, (358)
- % <V-ALGE VAl (359)
The element excitation column vector is
e O o AfH™ > (360)

H

2
In the special case of half-spaces with the same ma-
terial parameters, the problem is the electromagnetic
dual of the problem of scattering by a planar conduc-

tor of cross section .4 embedded in the same medium
(Butler et al., 1970).

Nonplanar Screens If a conductor containing an
aperture is nonplanar, then imaging cannot be used
to replace the conductor; one must also model the
conductor numerically. One approach is to model the
entire conductor by the methods of §10, the aperture
boundary becoming simply the conductor’s bound-
ary, but if the aperture is small so that the conduc-
tor is almost a closed cavity, field penetration into the
cavity region may be weak. The low field levels re-
sult from near-cancellation of incident and scattered
fields, and the computation of the small differences
between these field quantities may result in partial or
complete loss of significant figures. This difficulty is
circumvented by using a modified form of the mag-
netic current formulation above. First, the aperture
A is replaced by a conducting surface so as to form a
closed conductor S. Separate equivalent electric sur-
face currents J* are then placed on the exterior and
interior walls, respectively, of S, and, as in the pla-
nar screen case above, magnetic currents of opposite
signs are placed on opposite sides of A to reproduce
the original electric field in the aperture. These equiv-
alent currents are determined by requiring continuity
of the tangential magnetic field across A and vanish-
ing of the electric field on both sides of S. The weak
form of the resulting coupled system of equations is

< A, HY (JF, M*) > + < Ay, H™ >

=< A, HZ(J,M7)>, reA, (361)
< Ay EA(M,J) > + < A, E > =0, 1€ S, (362)
< Am,EAM7,]7)>=0, resS. (363)

In (361)—(363), the dependence of the fields on the
currents producing them is shown explicitly. The +
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superscripts on the magnetic field indicate that the
quantity is evaluated just exterior or interior to A,
respectively, and + superscripts on the current quan-
tities indicate that the surface current M* = +M on
the exterior or interior of S is used, respectively. The
potential representations (9)—(16) play the role of op-
erators relating current and field quantities.

Wires

Piecewise Linear Wire Segment Modelling Wire
scatterers may be treated using the electric field in-
tegral equation. We assume that a wire’s radius is
small compared to the wavelength, and its length is
large compared to its radius. Under these conditions,
a number of further assumptions are justified:

o The surface current has only a component paral-
lel to the wire axis, and is invariant about the circum-
ference of the wire. This implies that if r is a point
on the wire axis, the wire surface current at that cross
section is modelled as J(r) € where I(r) is the

total current, a{r) is the cross-sectlonal radius, and £
is the unit vector parallel to the wire axis at r.

- Zna

e Both the scattered and incident electric field com-
ponents do not vary significantly about the wire cir-
cumference.

o The surface area and hence the charge contained
on any wire ends or junction surfaces are negligible.
We loosely define a junction surface as wire surfaces
inside a spherical ball of radius no more than a few
wire radii and containing two or more intersecting
wires (possibly with dissimilar radii). From the con-
tinuity equation, neglecting charge accumulation at
wire junctions and end surfaces implies, respectively,
that (1) Kirchhoff’s current law applies to total cur-
rents at junctions and that (2) the total current van-
ishes at wire ends.

The numerical modelling of wires via the EFIE under
these assumptions incorporates features of both the
three-dimensional EFIE and its two-dimensional TE
counterpart. We model the wire geometry as a piece-
wise linear approximation to a three-dimensional
curve representing the wire axis, with a (constant)
wire radius associated with each segment. The data
structure for the model segment coordinates is thus
identical to that of Table 1, except that a third column
is added to store the z coordinates of segment end-
points. The data structure of Table 10 may be used
to store the element, node connection, DoF and cur-
rent reference data; an additional entry containing the
radius of the segment (element) completes the table.
Wire segments and currents are parameterised by gen-
eralising to three dimensions the nodal coordinates,
the edge vector definitions and the bases of §7. The

changes are effected in expressions there by merely
replacing the local two-dimensional node vectors p{
by three-dimensional vectors r{. With these generali-
sations, the surface current density at a wire segment
cross section with axis at r is modelled a s

zm

where A, is defined in (165), (171) and (177), and I,
is the total current at the cross section of a segment
end node with degree of freedom index n. Wire-to-
wire junctions are handled by overlapping bases at a
junction just as described for strip junctions in §7.

Zna (364)

System matrices are obtained by using i?a—'?r) as test-

ing functions and substituting (364) into (245). The
corresponding element matrices have the same form
as (173), (179) and (182), but with potential integrals
now given by

ef _ pepf tr 1y gzt

vl =0 JO L) Kir,t')de) d&s, (365)

where, for e #f,

, e-—ij
K(r,r') UnR (366)
with

R? =18+, — &) —rfE) 2+ (a2 (367)
In the above, we have approximated R = [r—r'| by

restricting r and r’ to the axes of tube segments repre-
senting source and observation elements, thereby re-
ducing the surface integration to an integration along
the wire axes; the correction term involving the radius
of the observation segment added in (367) improves
the accuracy of this potential calculation when source
and observation segments are close and the assump-
tion of circumferential invariance of fields and currents
no longer strictly holds. The integrals in (365) may be
performed using Gauss—Legendre rules, Table 3.
For ¢ = f, we have

2 p-ikR _ 1
Kieye)= - [ " dos Sk, (368)
with
R= \/[ée(él EIE+4( af)2 sin’ 9
é 1+ ( s > (E1-€))? (369)

The integration on ¢ in the first term of (368) can be
performed using Gauss-Legendre rules, as can its suc-
cessive integration along the wire axis in {365). The
singularity originally at R = 0 in the integral has been
removed and added back in the second term (Wilton
and Butler, 1981), which is expressed in terms of X{(f),
a complete elliptic integral of the first kind, defined as
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H d9
0 \/1-p2sin’6

The elliptic integral has a logarithmic singularity at
B=1, ie, when & =&|. Hence the inner integral
in (365) on this term should be performed using the
quadrature rules of Table 4; Gauss—Legendre rules
may be used on the outer integral. In obtaining (368),
we observed that the field on the segment produced
by a circumferentially invariant basis is also circum-
ferentially invariant, and hence the observation point
integral over the circumference becomes trivial. The
longitudinal integrals are performed using normalised
coordinates to parameterise points along the tube
axes of both the source and observation segments.

K(B) =j (370)

Wire-to-Surface Junctions Special basis functions
must be used to attach wires to surfaces. Without
loss of generality, we assume that a wire is attached
to a surface at the vertex of a triangle(s). For the wire
model segment that attaches to the surface, a DoF ex-
ists at the attachment point to account for the current
from the surface into the wire. The same DoF index
also applies to the common vertex of the triangles sur-
rounding the attachment point. Let one of these tri-
angles be element e with the wire attached at its ith
vertex. Then a junction basis on element e has the
form

S Ll P e
A(r)_gi[l <B,~p,-)2:|A’(r)’ (371)

where €, b; and ﬁi are the triangle parameters defined
in Table 8, p; is the vector to r from vertex i of the
triangle and A is the usual surface basis function as-
sociated with edge i (opposite vertex i) of triangular
element e and defined in §10. Several properties make

the basis function in (371) useful for modelling the
surface current associated with the wire junction:

e The total flux of current into the attachment ver-
tex is unity.

o The current density has the correct 1/|p;| depen-
dence near the vertex.

o The normal component of current vanishes along
the three edges of the triangle where DoFs for the
usual surface bases are defined.

pt It should be assumed that the wire surface cur-
rent distributes itself uniformly on the surface at the
base of its attachment point; any angular nonuni-
formities in the surface current distribution near the
base of the junction are modelled by the usual surface
bases. The first of the above properties allows us to
assign to each triangle a fraction of the total current
entering the wire proportional to the triangle’s vertex
interior angle at the attachment point. Thus, if the in-
terior angle of vertex 7 of triangle  at the attachment
point is o”, the junction basis function on triangle e is

(xe
Syl o
where the sum is over the angles of all the Nj triangles
attached to the junction. When used in the EFIE, we
also need the divergence of the basis function,

1 1
\vJ ] — \v) -
-A (I‘)— ) Af(r) = e

A(r), (372)

{373)

In the magnetic vector potential, the junction basis
produces an integrand singularity at the junction ver-
tex for every observation point; the integral may be
handled by the singularity analyses of §10.

Point and Surface Loading, Thin Materials

Using coatings of special materials or placing lumped
loads at strategic points on conducting scatterers are
often used to control scattering characteristics. Also
the materials of some scatterers are composed of
thin, anisotropic dielectrics, or have surface rough-
ness, corrugations or other surface modifications.

Point or lumped loads on conductors are easily
modelled using the EFIE. Suppose a point load with
terminal impedance Zy, is connected between two el-
ements sharing a node with global degree of freedom
index p. This is equivalent to placing a (dependent)
point voltage source V;, = ~I,Z; between elements at
the node, where I, is the total current associated with
the DoF. The equivalent voltage source adds a term
-Zi1, IC,, Ap(r) -0 dC to the pth row of the excitation

vector, where C, is the element’s edge and the inte-
gral is the basis function’s flux across the edge. When
taken to the left-hand side of the equation, the load
impedance and flux integral product is merely added
to the pth diagonal element of the system matrix. If
the coefficient I, represents a surface density rather
than a total current quantity, then a multiplicative
edge length factor also appears.

Good conductors, even when very thin, can be
modelled as satisfying a surface impedance boundary
condition,

[E<(J)+E™] = Zs], (374)

where the left-hand side represents the total field.
This equation is simply a modified form of the EFIE in
which the net effect of expanding the current and test-
ing the right-hand side is to add terms < Ay ZsAy, >
to the EFIE system matrix.

tan

Although most problems can, in principle, be mod-
elled via the methods presented to this point, some
would require excessive computational resources or
become unnecessarily complex. A number of approx-
imate boundary conditions have therefore been de-
veloped to reduce the complexity of such problems
(Richmond and Newman, 1976; Volakis et al., 1998).
Thin material sheets, conductor-backed dielectrics,
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corrugations and rough surfaces, for example, can of-
ten be modelled using the Leontovitch boundary con-
dition {Senior and Volakis, 1995),

nxE=7Znx (i xH), (375)
for which an efficient three-dimensional numerical
treatment is available (Bendali et al., 1999). Leon-
tovitch boundary conditions are approximate rela-
tions between field quantities at a point. More
accurate, higher-order boundary conditions involve
not only the fields, but also their derivatives at a
point. Higher-order boundary conditions have been
used, for example, to model curvature in dielectrics
and coated conductors, multilayered materials and ta-
pered dielectric-filled grooves (Hoppe and Rahmat-
Samii, 1995; Senior and Volakis, 1995).

Green’s Functions and Geometrical Symmetries

Layered Media Green’s Functions The integral
equation approach becomes particularly powerful
when combined with Green’s functions to represent
fields or potentials of point sources radiating in a com-
plex medium. The principal advantage of the ap-
proach is that the required number of degrees of free-
dom can be much less than that of the wave equa-
tion and finite element approach (Newman, 1988).
One commonly appearing three-dimensional Green’s
function is that for a layered medium. A mixed
potential formulation due to Michalski and Zheng
(1990) is particularly well suited for problems involv-
ing scatterers near, penetrating or immersed in a lay-
ered medium. The scatterer is replaced by a set of
boundary equivalent currents; the equivalence theo-
rem then guarantees that the interior fields vanish,
and that the layered medium may be extended into the
region occupied by the scatterer so as to complete a
region of uniform layers. Fields radiated by the equiv-
alent currents can then be calculated using the Green’s
function for the layered medium. If the interior of
the scatterer is homogeneous, the interior fields may
be represented using equivalent currents and an inte-
gral equation can be used as in §12. If, instead, the
scatterer interior is inhomogeneous, a finite element
formulation can be used as in §14. The exterior re-
gion integral equation is formulated as in §10, §12
and §14. The needed potential integrals generalise
the forms of (10)—(13), respectively, as (Michalski and
Zheng, 1990)

A= J ¢Ale,v) - Jp(r) dD),
D
r,r')-Mp(r')dD/,
i'JD(r,)PZ(r’ I'/)dD!,

D

z-Mp(r')Q,(r,r')dD’, (376)

J
D= JD ap(t)K®(r, ¢ )dD’ +f
J )

mp(r)K¥(r, r’)dD'+J'

where GA4,GF are dyadic vector potentials and
K® KY,P,, O, are scalar partial potentials for a
medium with layer axis z. These Green’s potentials
are, in turn, expressed as spectral integrals over trans-
mission line Green’s functions representing the lay-
ers. Asymptotic spectral forms of the latter are simply
contributions of direct and first-bounce plane wave
reflections from adjacent layers, and their spectral in-
tegrals represent direct and quasi-static image point
source contributions, respectively, in the spatial do-
main (Michalski and Mosig, 1997). Explicit removal
of these terms from spectral representations signifi-
cantly improves their convergence. Reinstating the re-
moved terms in spatial domain form allows their con-
tributions, which include singularities, to be treated
by the methods developed in earlier sections (Bunger
and Arendt, 1997).

Periodic Structures The Green’s functions of the
previous section can also be adapted to treat peri-
odic structures involving layered media. Periodic me-
dia Green’s functions are doubly infinite series whose
terms are simply sampled values of the spectral inte-
grands for nonperiodic layered media. The sampling
period in the spectral domain controls the periodicity
properties of the Green’s function in the spatial do-
main. As in the nonperiodic case, asymptotic forms
of the spectral Green’s function can be identified, but
they now comprise infinite arrays of point sources
representing direct and quasi-image contributions in
homogeneous media. The direct summation of con-
tributions from these infinite arrays is slowly con-
verging, but may be greatly accelerated by means of
the Ewald method (Jordan er al., 1986). By isolat-
ing the individual point sources that represent direct
and quasi-image contributions from the array, singu-
lar integrals may be treated by the methods discussed
for homogeneous media.

A rectangular waveguide with longitudinal inho-
mogeneities may be treated as a special case of a lay-
ered periodic structure obtained by alternately imag-
ing the guide geometry in the waveguide walls (Har-
rington, 1961).

Reflection Symmetries Green’s functions may usu-
ally be found only for regions whose boundaries have
certain symmetries. Conversely, problems with geo-
metrical symmetries can be efficiently modelled us-
ing appropriate transformations of the background
medium Green’s function. As a simple example, con-
sider reflection symmetries. Unfortunately, vector
fields and sources do not have the familiar “even”
and “odd” reflection symmetries of scalar fields and
sources. The appropriate generalisation, however, is
obtained by considering images in perfect electric or
perfect magnetic ground planes (Harrington, 1961)
(PEC or PMC, respectively), assumed to be in the
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plane z = 0. We also assume the primary currents of
interest are in a homogeneous region z > 0 and the
image currents are in z < 0. Taking into account the
sign changes of the various image components associ-
ated with electric and magnetic currents and charge,
the Green’s potentials, in the notation of (376), are
found to be

GAlr,1') = (& +§9 +22)uG(r,¥')
F (XX +yy —22)uG(r,r' —22'7)

Glir,v') = (kX +§§ +22)eG(r, 1)

+ (X% + 9y —22)eG(r, v’ —22'7)
K2(r,1) = é [Glr,t') F G(r, 1 —223)], Py(r,r')=0
K¥r,0) = % [G(r,t) £ G(r,r' =227)], Qx(r,¥') = 0, (377)

where G{r,r') is the homogeneous medium Green’s
function. The upper sign in (377) applies to reflec-
tion in a PEC plane, the lower, to a PMC plane. The
form of symmetry used depends on whether a PEC or
PMC ground plane is actually present, or, if modelling
a body with a geometrical reflection symmetry plane,
what boundary conditions are satisfied by the total
fields on the symmetry plane with the body symmet-
rically illuminated. For objects having a symmetry
plane, the excitation must be decomposed into sym-
metrical components, each of which excites currents
with the same symmetries as those imaged in PEC or
PMC ground screens. Because almost half the sur-
face currents (i.e., all those not touching or passing
through the ground plane) are related by symmetry,
the number of unknowns can be reduced by nearly
a factor of 2 for every plane of symmetry present in
a problem’s geometry. The approach can be applied
successively for up to three orthogonal object symme-
try planes (Tsai ef al., 1974).

Bodies of Revolution A body of revolution (BOR) is
an object with continuous rotational symmetry; i.e.,
it is formed by rotating a curve in the x—z plane—
the so-called generating curve—about the z axis. If
the original curve is modelled by piecewise linear seg-
ments, a model made up of conical annular segments
results from the rotation. A point on the BOR surface
may be parameterised by its position along the gener-
ating curve and its rotation angle ¢ measured from the
x—z plane. A key feature of the BOR is that the fields
and equivalent currents are periodic in ¢ and hence
can be expanded in Fourier series in ¢. For example,
the electric surface current has the form

= 3 et

p=—con=1

) 1200 e, (378)

where A, and I1, are triangle and pulse functions
modelling, respectively, current components parallel
to and perpendicular to the generating curve. The
quantity p is the distance from a point on the surface

of the BOR to its axis. Each Fourier angular harmonic
couples only to a like harmonic of the incident field.
Thus the associated EFIE, for example, reduces to the

system

2 ) () [5] e

) i | L] [ |
which may be solved for the pth harmonic current
distribution independently of the other harmonics
(Govind et al., 1984). In practice, one obtains suf-
ficient accuracy with approximately P & kpmax har-
monics, where pmax is the largest value of p on the
BOR. For each of the P problems, current coefficients
associated with just the two orthogonal current com-
ponents along the generating arc are determined, in
contrast to the usual approach in which current over
the entire scatterer surface must be found.

A related problem is one in which a body has P-
fold rotational symmetry. A body is said to be a dis-
crete body of revolution (DBOR) if it reproduces it-
self when rotated through a slice angle of Z—IZ‘ radians
or any multiple thereof. In this case, a generating slice
exists such that, when it is rotated through the slice
angle P times, it generates the entire geometry. The
generating slice may be subdivided into a triangular
mesh with N degrees of freedom per slice. If the de-
gree of freedom index within a slice is # and the slice
index is k, the current is represented as the discrete
Fourier series

P-1 N /Pl ke
-y 215(2 Aﬁ(r)e/k%),
p:

0 n=1 k=0

(380}

where Aﬁ is a basis function associated with the nth
DoF on the kth slice. The currents in (380) have been
decomposed via the discrete Fourier transform into
symmetrical components with harmonic index p such
that components at corresponding element locations
in adjacent slices differ only by a common progressive

phase factor, ¢/ % . When the excitation is similarly
decomposed, it is found that only the Fourier com-
ponents of like harmonics are coupled. The equiv-
alent current may then be separately determined for
each harmonic, using as unknowns only the currents
within a single slice. As P — oo, the DBOR becomes
a BOR, and one may readily identify terms of (380)
that approach those of (378).

Higher-Order Modelling

Higher-Order Geometrical Modelling Piecewise
linear models have been used to model all the prob-
lems considered up to this point. For problems in-
volving curves or curved surfaces, higher-order mod-
els that include curvature can be applied to obtain
improved accuracy due to the improved geometrical
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fidelity. Models of almost any order are possible, but
quadratic curve and surface approximations (Cham-
pagne et al., 1992; Brown and Wilton, 1999) are
found to be relatively simple to apply and sufficiently
accurate for many purposes.

Higher-Order Field and Source Modelling Higher-
order bases can be used to improve surface cur-
rent and field representations in both integral and
differential equation formulations. Usually the re-
quired bases must be divergence- or curl-conforming,
respectively (Graglia et al., 1997). It is also de-
sirable that they be defined on curved surfaces so
that they may be used in higher-order geometry
modelling schemes, and interpolatory so they yield
well-conditioned system matrices. In dealing with
higher-order bases it is important to maintain accu-
racy in the evaluation of element matrices; otherwise,
the potential for higher-order bases to reduce the er-
ror may not be realised.

Solvers and Fast Methods

For very large systems of equations, the matrix solu-
tion time can dominate the overall computation time.
For such problems, it may be necessary to give care-
ful consideration to the solution procedure. So-called
“direct solvers”, which use classical Gaussian elimi-
nation methods, are often used for solving the full ma-
trices that arise from integral equation formulations,
but they become expensive to use for large problems.
One then turns to “iterative methods” in which an
updated solution column vector at a given stage is esti-
mated from previous trial solution vectors and a resid-
ual error—the difference between right- and left-hand
sides of the matrix equation when the most recent trial
solution is substituted for the unknown vector. The
methods terminate when the residual or other error
measure falls below a specified tolerance; the most re-
cent trial vector is then taken as the approximate solu-
tion. The stabilised biconjugate gradient (BICGSTAB)
and generalised minimum residual (GMRES) algo-
rithms (Gutknecht, 1993; Saad, 1996) are found to
be among the most effective iterative methods when
applied to the complex-valued, non-Hermitian matri-
ces that typically arise in electromagnetic scattering
calculations.

The more iterations a method requires to reach
convergence, the poorer the method’s efficiency, but
slow convergence is likely due to use of a poorly
conditioned equation set. To improve the conver-
gence of iterative methods, one can look for a more
well-conditioned formulation or for a good precondi-
tioner. The latter is equivalent to a matrix that, when
it multiplies both sides of the system equation, im-
proves the conditioning of the resulting system (Saad,
1996). Good preconditioners—even if only crudely—

approximate the inverse of the system matrix, and
finding them is often an ad hoc excercise that relies
on physical knowledge of the behaviour of or approx-
imations to the solution of the particular problem.

In using iterative procedures, one may save matrix
storage by generating matrix elements only as needed
during an iteration. The matrix-vector product re-
quired of the iterative scheme can be computed as
they are generated, and after being used to update
the solution, the elements may be discarded and re-
generated on the next iteration. Differential equation
approaches have an inherent advantage in storage re-
duction schemes because their system matrix is sparse;
it may not even be necessary to discard matrix ele-
ments after each iteration, although they are relatively
inexpensive to regenerate. To take advantage of ma-
trix sparsities that arise, a number of sparse matrix
storage schemes have been devised.

Matrix sparsity not only reduces storage require-
ments, but also speeds up the most time-consuming
task in iterative solution processes—the formation of
matrix—vector products involving the system matrix
and the trial solution vector. One merely skips the
product calculation when a zero element from the sys-
tem matrix is one of the factors (or, equivalently, the
element is not present in a sparse storage scheme). Ac-
celerating the computation of matrix—vector products
in iterative approaches is at the heart of all so-called
fast methods (Chew et al., 1997). A number of such
schemes have been developed, among which are the
following;:

e Basis functions are used that produce directed
beams interacting with only small portions of a struc-
ture (Canning, 1990)

o Basis functions are projected onto a regular grid
such that the moments to a certain order are pre-
served; the matrix—vector product on a rectangular
grid is convolutional in form and can be performed
quickly using discrete Fourier transforms.

e A block of the matrix representing interactions
between a group of spatially adjacent sources and a
group of spatially adjacent testing functions can be di-
agonalised for fast multiplication by means of plane
wave expansions. Multilevel (Chew et al., 1997)
versions of this scheme appear to yield the fastest
schemes currently available.

§16. Other Methods

Frequency Domain Methods

There exist a number of frequency domain ap-
proaches that we have not considered, but which are
closely related to the methods of this chapter. The
simplest of these is the finite difference method, in
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which the rectangular coordinate derivatives in the
wave equation are replaced by finite differences. In
principle, this approach could always be used instead
of the finite element method, but in practice it works
best when the boundaries of the region to be modelled
are parallel to the coordinate axes.

The generalised multipole techniques (GMT) may
be used to model closed conductors and homoge-
neous material regions that are not too thin. They
employ modified forms of the equivalence principle
in which the equivalent surface sources are moved
slightly off the surface and into the null field region,
i.e., the region complementary to the equivalence re-
gion. Instead of surface density sources, the sources
are point sources or collections of multipole sources.
While the testing procedure for fields is similar to
that for moment and finite element methods, ihe field
contributions of equivalent surface sources are re-
placed by sums over point or multipole sources that
are located just off the surface. An advantage of the
approach is that no singularities arise in enforcing
boundary conditions (Hafner, 1991). As might be ex-
pected, some care must be exercised in selecting the
number and locations of sources and in the treatment
of geometrical singularities, such as corners. The
method fails when the null field region is thin.

The T-matrix method (Waterman, 1969) is also
a very efficient method when used to treat homoge-
neous materials with smooth boundaries. The sur-
face equivalent currents are expanded in terms of
tangential vector components of spherical multipole
sources about a common origin within the scatterer.
The fields radiated by the surface sources must vanish
in the null field regions—the regions complementary
to the equivalence region—and this condition is en-
forced by testing with spherical harmonics on a spher-
ical surface in the null field region to obtain a system
of equations for the current expansion coefficients.
The system matrix approaches an identity matrix as
the boundary approaches a sphere, but becomes quite
ill-conditioned as the boundary approaches flat or
narrow shapes. Hence the method is most widely
used in modelling nearly spherical scatterers such as
aerosols and hydrometers.

Time Domain Methods

Our concentration here has been on frequency do-
main methods, not only because many problems of
interest are posed in the frequency domain, but also
because linear dispersive materials are easier to treat,
and most parameters and figures of merit (e.g., surface
impedances, radar cross sections) are defined only in
the frequency domain. Nevertheless, much fruitful in-
sight can be obtained by modelling problems directly
in the time domain, and considerable progress has

been made in this area. Time domain formulations
are often more efficient than corresponding frequency
domain formulations. For example, frequency do-
main parameters can often be determined over a wide
band from a single simulation by Fourier transform-
ing the time domain response to a narrow pulse sim-
ulating an impulse. To obtain the same result, a
frequency domain computation would require solu-
tion at many different frequencies. It is also often
necessary to solve nonlinear problems directly in the
time domain. Most frequency domain integral and
partial differential formulations have time domain
counterparts that may be found by inverse Fourier
transforming the corresponding frequency domain
equations. The process simply employs the frequency
multiplication—-time derivative correspondence, j® —
E%’ and the exponential shift theorem, J{r, o)e kR
J(r,t=R/c¢). Usually a finite difference or linear in-
terpolation scheme is used for discretising the time
variable.

The finite difference time domain (FDTD) ap-
proach is quite widely used (Kunz and Luebbers,
1993; Taflove, 1995), both to simulate time domain
excitations directly and to obtain wideband responses
by Fourier transforming the time domain response. It
employs a pair of separate, staggered rectangular grids
for modelling the electric and magnetic fields, respec-
tively, which enables all derivatives with respect to
rectangular coordinate quantities in Maxwell’s equa-
tions to be replaced by central finite difference approx-
imations. When the time derivatives are also replaced
by central differences, one obtains a very simple yet
efficient explicit scheme for alternately updating the
electric and magnetic fields at successive time steps.

For geometries that do not conform well to a rect-
angular mesh, some efficiency is lost in finite differ-
ence methods due to the need for a fine mesh to avoid
so-called stair-stepping error in approximating object
and material boundaries. Also, if the time interval
of interest is sufficiently long that the scattered field
can reach the outer mesh boundary, reflect and re-
turn to corrupt the field at the point of interest, then
some scheme must be employed to absorb the scat-
tered fields incident to the mesh boundary. This con-
sideration is not confined to the FDTD approach, but
is common to all partial differential equations ap-
proaches and is discussed in §17.

Closely related to the finite difference approach
is the transmission line modelling (TLM) approach
(Hafner, 1990; Trenkic ef al., 1997), in which points
in space represent junctions between short transmis-
sion line sections whose parameters depend on the lo-
cal material properties. The transmission lines com-
municate propagation and polarisation information
between adjacent nodes, and scattering matrices
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describe the interactions of the lines with one another
at the junctions.

To enable the use of unstructured grids for mod-
elling object boundaries, a time domain finite element
formulation of the wave equation can, in princi-
ple, be developed. This approach has the potential
to eliminate the stair-stepping errors associated with
rectangular meshes, but is still in the early stages
of development for three-dimensional problems (Lee
et al., 1997). In two dimensions, hybrid methods
using time-domain integral equations to truncate a fi-
nite element mesh have been developed (Rao, 1999).

As in the frequency domain, time domain integral
equations offer the potential for modelling just the
fields on the boundaries of piecewise homogeneous
objects. Stabilised methods for treating time domain
integral equations usually employ so-called implicit
schemes, for which at least a banded matrix must be
inverted (Rao, 1999). Often the banded matrix can
be solved efficiently using iterative methods at each
time step, or can be inverted once at the initial time
step and the result used for all subsequent time steps.
Time domain integral equations are likely to begin to
see increased usage as mesh terminators for time do-
main partial differential equation approaches such as
FDTD or FEM methods. Fast methods for time do-
main integral equations are also under development.

§17. Mesh Truncation:
Boundary Conditions

Absorbing

When discrete methods are used to solve time or fre-
quency domain wave equations in open regions, we
must consider mesh truncation conditions. Scattered
fields must satisfy the radiation conditions {24) at in-
finity, but one cannot generally afford to extend a
mesh to regions where these conditions hold even ap-
proximately. Hence conditions that apply on mesh
boundaries of finite extent are needed. One rigorous
approach is to use the hybrid integral equation ap-
proach of §14 to provide a radiation condition via
a boundary integral equation, but the hybrid inte-
gral approach couples all boundary elements together,
leading to a full matrix in the frequency domain. Of-
ten one would prefer an approximate but simpler ap-
proach, with local coupling only, that preserves the
sparsity of the finite element or finite difference equa-
tions. Consequently, considerable effort has gone
towards the development of local so-called absorb-
ing boundary conditions (ABC) (Silvester and Pelosi,
1994). Early approaches focussed primarily on ob-
taining conditions that reproduced the leading asymp-
totic terms of various outgoing wave expansions.
More recent methods have concentrated on synthe-
sising lossy artificial materials and profiles that, when

discretised by finite techniques, absorb incident fields
over wide incidence angles and bandwidths (Berenger,
1994; Kuzuoglu and Mittra, 1997). A number of
such ABCs with very good performance have been de-
veloped for both frequency and time domain applica-
tions.

Notes

1. Though the representation theorem applies only to bounded
functionals, some unbounded functionals may also be similarly
represented if g is suitably extended to distributional functions.
For example, if g = —8(x —x")8(y —y'}8(z —2’), we have I[u] =
u(r'), the value of the field at r/, but »(r'}) may be unbounded,
for example, at geometrical singularities.

2. If one attempts to apply the MFIE to an open curve C with
normal i, one must treat the currents on opposite sides as ex-
isting on two limiting surfaces: Ji on C*, the side with normal
fi, and [; on C7, the opposite side. With observation points
on C between the two limiting surfaces, the resulting MFIE for
the TM case, for example, is

l_w - L 70} + 2 (p)

= Hy“(p).

aG(Pa ) ,
] on .

In the EFIE case we combined the net equivalent current [, =
J; +J; into a single unknown. In the MFIE case, however, the
appearance of both a sum and difference current in the above
equation does not allow this. The equation above, while a
valid identity, does not contain sufficient information to deter-
mine either the sum or the individual currents J; and J;.

3. Since bases are generally defined only piecewise over the mesh,
strictly speaking the integration by parts can only be performed
over individual elements, with boundary terms like that in
(209) arising from the element boundaries. Adding results
for adjacent elements, however, one finds that the element
boundary terms cancel since tangential components of both
the magnetic field and the basis functions are continuous across
element boundaries.
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Note 1

A Summary of Asymptotic High Frequency (HF) Methods for Solving Electromagnetic (EM)
Wave Problems
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1320 Kinnear Rd., Columbus, Ohio 43212
E-mail: pathak.2@osu.edu

The geometrical optics (GO) ray field consists of direct, reflected and refracted rays. GO ray paths obey
Fermat’s principle, and describe reflection and refraction of HF EM waves, but not the diffraction of
waves around edges and smooth objects, etc. Consequently, GO predicts a zero EM field within shadow
regions of impenetrable obstacles illuminated by an incident GO ray field. Early attempts by Young to
predict edge diffraction via rays, and by Huygen, Fresnel and Kirchhoff to predict diffraction using wave
theory will be briefly reviewed. Unlike GO, the wave based physical optics (PO) approach developed
later requires an integration of the induced currents on the surface of an impenetrable obstacle
illuminated by an external EM source in order to find the scattered field. The induced currents in PO are
approximated by those which would exist on a locally flat tangent surface, and are set to zero in the GO
shadow region. If the incident field behaves locally as a plane wave at every point on the obstacle, then
it can be represented as a GO ray field; the resulting PO calculation constitutes a HF wave optical
approach. PO contains diffraction effects due to the truncation of the currents at the GO shadow
boundary; these effects may be spurious if there is no physical edge at the GO shadow boundary on the
obstacle, whereas it is incomplete even if an edge is present at the GO shadow boundary. In the 1950s,
Ufimtsev introduced an asymptotic correction to PO; his formulation is called the physical theory of
diffraction (PTD). PTD = PO + , where s available primarily for edged bodies. In its original form, PTD
is not accurate near and in shadow zones of smooth objects without edges, nor in shadow zones for
bodies containing edges that are not completely illuminated or visible. At about the same time as PTD, a
ray theory of diffraction was introduced by Keller; it is referred to as the geometrical theory of
diffraction (GTD). GTD was systematically formulated by generalizing Fermat’s principle to include a new
class of diffracted rays. Such diffracted rays arise at geometrical and/or electrical discontinuities on the
obstacle, and they exist in addition to GO rays. GTD = GO + Diffraction. Away from points of diffraction,
the diffracted rays propagate like GO rays. Just as the initial values of reflected and refracted rays are
characterized by reflection and transmission coefficients, the diffracted rays are characterized by
diffraction coefficients. These GTD coefficients may be found from the asymptotic HF solutions to
appropriate simpler canonical problems via the local properties of ray fields. Most importantly, the GTD
overcomes the failure of GO in the shadow region, it does not require integration over currents, and it
provides a vivid physical picture for the mechanisms of radiation and scattering. In its original form, GTD
exhibits singularities at GO ray shadow boundaries and ray caustics. Uniform asymptotic methods were
developed to patch up GTD in such regions. These uniform theories are referred to as UTD, UAT, spectral
synthesis methods, and the equivalent current method (ECM). The pros and cons of wave optical
methods (PO, PTD, ECM) and ray optical methods (GO, GTD, UTD, UAT) will be discussed along with
some recent advances in PO and UTD. A UTD for edges excited by complex source beams (CSBs) and
Gaussian beams (GBs) will also be briefly described; the latter may be viewed as constituting beam
optical methods. A hybridization of HF and numerical methods will be briefly discussed as well.
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Note 1

Two Badie Asymptotic Nigh Frequency (HF)
/fr{ez‘ﬂoé’o(agt'ed con e Cm‘eao’u'éed ad fotlows :

1e RAY OPTICAL METHODS

(@) Geometrical Optics (G0)

(b) Geometrical Jheory of Diffraction (6TD)
[67TD = GO + Diffraction]

(¢) Untform versirn of the GTD

UtTohd UAT

e WAVE OPTICAL METHODS
(4) P-&,ydt'caj Optied (PO)
) J%?décal iﬂmeotg of Diffraction (PTD)
[PTD = PO + Diffraction Cotrectim]
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GENERAL COMMENTS ON
ASYMPTOTIC HF METHODS
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DEVELOPMENT OF THE RAY CONCEPT
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Note 1
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Note 1

RAY METHODS & SOME APPLICATIONS (cont.)

* Keller and coworkers (1958; 1962) introduced a new class of rays, i.e. diffracted rays, to
describe diffraction in his geometrical theory of diffraction (GTD).
» Diffracted rays exist in addition to geometrical optics (GO) rays.
» Diffracted rays are produced at structural and material discontinuities, as well as at
Y

grazing incidence on a smooth convex surface.
TR R

HHE

Incideny’
Q- Ry \s
{4
x
o0
W |-
W< o
E @ Aweel, U
Q[ jro
& T { oevces o
¢ tncident 1/, Rays incident = Difracted
“ R Q g - =  sutce -
- 2 Ry
-, PAE:
- L (GO + Diffraction)
Ofmcad £ Ej(Pz,Rt)”El(QE)'DEf(sj)e 2
3 E{(R)~ E'Q5) T(0,,0,)1{s3)e**

RAY METHODS & SOME APPLICATIONS (cont.)

« Tofind p and T, etc, in diffraction problems, one may:
(a) Solve appropriate, simpler canonical problems which model the LOCAL

o geometrical and electrical properties of the original surface in the
0 neighborhood of diffraction points.

(b) An exact (or sometimes approximate) solution to a canonical problem is
first expressed as an integral containing an exponentx D

= =27
Kk = wave number = /ﬂ.

D = characteristic dimension
(c) Canonical integral is then evaluated asymptotically, generally in closed
form, as parameterx D becomes large (i.e. at HF).

(d) D and T arethen typically found from (c) by inspection.

(e) Canonical D and T generalized to arbitrary shapes by invoking
principle of locality of HF waves.

-» Keller's original GTD is not valid at and near ISB, RSB, SSB (i.e. in SB transition
regions).
» UTD developed to patch Keller's orginal theory within the SB transition regions.
* GTD corrects GO, and GTD = GO + diffraction
» UTD corrects GTD, but usually UTD - GTD outside SB transition regions.

ABORATORY

£léctr06¢ience
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Note 1

RAY METHODS & SOME APPLICATIONS (cont.)

* Additional Comments :

(a) Ufimtsev’s Physical Theory of Diffraction (PTD) (1950s)
corrects Physical Optics (PO). PO contains incomplete
diffraction.

(b) PTD generally requires numerical integration on the
radiating/scattering objects, hence, loses efficiency as
frequency increases.

(c) PTD does not describe creeping/surface wave diffraction on
smooth convex objects; hence, does not accurately predict
patterns in shadow zone of antennas on such complex objects.

(d) Conventional numerical CEM methods become rapidly
inefficient with increase in frequency.

(e) In contrast, UTD ray paths remain independent of frequency.

(f) UTD offers an analytical (generally closed form) solution to
many complex problems that can not otherwise be solved in an
analytical fashion.

=
=

SlectroScience
LABORATORY

(7]

RAY METHODS & SOME APPLICATIONS (cont.)
«In many practlcal appllcatlonsof UTD the following dlffractlon ray mechanisms dommate

Y -
%//// GSE&\E‘;}H\ P&.—eo RAY PATH
’ GRAZING
Z AY
7 2
s SOURCE

(X \ © Rar path
SURFACE OIFFRACTED RAY. PATH
Ll -
| [1]P.H Pathek, ‘An - analysls of the 0
| of plane waves by a smooth convex cylinder,” Radio

| Sclence, Vol 14 pp418-436, 1979
| [2]P.H Pathek et al, *A uniform GTD analysis of the

| diffraction of EM waves by a smooth convex surface,” | (1]K.C Hll and P.H Pathak,"’AUTD |
T | IEEE m:mAnl  and Propa. Vol 8Sept1860. | solution for EM diffraction by acomerin
b o TR ), DR a plane anguler sactor,” IEEE Amt. Pmp.
'd QP | Symp. June 1891,
%//// i \eo Rav eaTi | [Z]K. C Hil,"A UTD solutionto the EM
——n L i scattering by the vertex of a perfactly

'MIR.G. Kouyoumjlan and P H Pathuk, SURFACE | conducting plane angular sector,” Ph.D

| *A uniform geometrical theory of SURFACE i | dissertation, The Ohio State Unmrﬂty

dlﬂractlon !‘or an edge ina perfactly RAY PATH R y ]
Pri I. 6

| .[1] PH l;_lia&d-,:A uniform GTD solution for tha
| radtation from sources on a convex surface,” /EEE

A Trans Ant and Propa. Vol 20 July 1881, '\
- |,
es g
Uniform Asymptotic |hgory of EM_ | H‘IHW II' o
| diffraction by a curved wedg, 'IEEE SOURCE OBSERVER 7
Trans Anlsnnas Propegal vol, AP 24 ;
| pp- 26-34, Jan. - j T 1 o
| [31 Boro /. ¢ an,H BURFACE 1] G. Carlucdo, "AUTD | Diffraction
Bl RAY.PATH... ' Coefficient for & Comar Formed by
I IEEE Pmceedlng. volume | NULL Pathak md N. Wang Rly unalyds of mmuul o | Truncation of Edges inan Oﬂmwlu 1
‘-62 pp 1416—1437 Nov ‘1974 ~ | coupling between antennas on a  COnvex surface,” )= . Smoath Cmvod Surface,” I8 e

— < 2] | IEEE Tmns Anl lnd Pmpu V0| 28 Nov 1881, - Prop. Symp June 2000.
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GTD

€ Edge Diffraction

Al«&;ﬂf’d—)o‘; (A —pfe 3 5',"—’84.
zp (NOTE : for 3-D case € »oo £ L)

188



Note 1

DK = 'e‘ji-r . | §C _ﬁ.” 3 0 -8
% Anyark Sing, [{oz‘( a+n )+ ‘ Z‘(’rTrfB_)}

7 { Cot (£££7) 4 Cot (Z=£7) }]

BT = ¢z ¢
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Note 1

SINGULARITIES OF GTD FIELDS.

s

O e GTD edge diffracted fields become SINGULAR
at GO SHADOW BOUNDARIES crealed ﬂg the edge .

CURE : UTD
SR
o2 UAT
4'{1‘58{.?58
ane not
;znc 6
{ng on
M:?aaid
durface .

@ e GTD field decomes SINGULAR at RAY CAusTICS .

€ L7158
CURE : ECM lused
M Gro, f
Causrsc ¢
—> Causmic IS8 tranaihim
)‘Mgt'd'nd o
NOT OVERLAP

N
P £Y-
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Note 1

SINGULARITIES OF GT7TD FIELDS.

GO REFLECTER
4= RAY CAUSTIC
COI/INCIDES WITH
DIFFRACTED RAY
CAUSTIC AND RSE

P LORWARD SCATTER

ALONG IS8 .
<+ G0 Nray cawdtie 1=- # i R R
Cotncidled twith E CURE s PTD
#X{AaCfCJ R ! AAAAA .
Cosotec amd £o6 =D .

CURE : UTD o2 UAT

T ef cbservadion
pont Crovoes
RSE away from
the Cawstic .

Acroso GO Ray

Overlap of the Cawslic one must
CAUSTIC € RSB we (vheonplets )
[ # Lramachon regiond AIRY Lype trand!-

Yeon furnctiond.-
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Note 1

UNIFORM RAY THEORIES OF EDGE DIFFRACTION

CTD fails witben tramsition Aeot'ond
adyacent to Shadow boundaries (SB%)

of G.0. /'za,?d.

Jo obtawm a H.F. total field tich s
Continuod across the 7584 § RSB , one
mudé depart from a ray-optical descristion
Of the GTD uom the ISB, RSB tramsithim 3ous

Ythe above reguirement (¢ departire from
/za,y o/éz‘c'c behonvtour on trharadhion &?4‘0744)
cam e cchedved énf/zoc&ta'ng ,d,é ‘al

ecle
e

fumctiond (02 trhamnil o func fc'a-nd) wn
the marvner of Smmvz{da&’/z,blm dotn.

- OQutacde the SB z‘/’za/ndzlc’m e gt ond one

Mudt fecover back the GTD 40litim.

A undform dobution whicl remacins
valed undiformly acroao S8 trasaition
egiond where GTD fails, & whict. wnifpnd,
Hecoverd the GTD owtelde these S8 trany
reolond (4 therefore vmpottamt.

192



( Kouyoumgian ¢ Pattiak )
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Note 1

PLANE OF
DIFFRACTION ()

EDGE-FIXED .
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Note 1

UTD =p  E%P)~ E'a). D,
edge difppachion ( (2)- Ce '44(9,1‘ 5

PLANE OF 4
_ DIFFRACTION ('s,e)

EDGE-FIXED

PLANE OF i

INC|DENCE :

(8.8) EDGE
A AL Ay A Ad A
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Note 1

MAGNITUDE
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Note 1
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Note 1
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Note 1

ﬂ': /"'c' . gs*)
[ ] * 0" ’ '

-

%

2N ;¥ T Y o
Rg. 4 | ‘* o= o= TOTAL ’
&1 | I ~ == DIFFRACTED
; L T e,
)
of /N I\
\ I\ p=5)
2 /1] / \\ .
' / \ / \
R e T e T P!
¢ (DEGREE) - )
(a) magnitude
3 \ 5 Ry .
shllity “" | H |
= fif]ir !
ge bl ‘l“ I
5 fll i
3° N “ \
i S
. -
i k .

=120
L
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[ ] @ 0 1% 190 210 sre 318 —liﬂ
¢ (DLGREE) '

(b) phase

Continuity of the total UTD field |
L surrounding a perfectly-conducting

s half plane excited by a plane wave
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@@ Srecdent Spherical Wave

® ﬂ%’ﬁza/gg kﬁ#’ Oplical lwrination :
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At the IS8 » kt"at(¢-¢’) = 0

At oan RSB , kL a*¢+¢) = o
ot kLTat(p+¢) = o0

> T w eadily verified that the totad
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at IS8 amd RSE.,
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DF - % & S [ / -1
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Note 1

¢ : ,
f X ’ > Y
. - 0 . J _

Coordinstes for radistion from an open-ended paraliel-plste weveguide

Radisred power psteerns for TEM mode incidence on the open end of a persiiss-
plate wevepuide of width a = 0-6A

- o= gingle diffraction, from eqns. 9.27,9.28

-e= gingle and mulitipie diffrection

—— QRECY, SQN. 020
{Reprintad from Yes and Feisen, 1968)
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Note 1

o 30° (]~ d 20° 120°

Radisted power petterns for TE, mods incidance on the open end of s persilel-plate
wevepuide of width & = 0-8A
- ee~ gingle diffrastion, from eqns.9.33,9.34
- = gingle snd muitipie diffraction
— GEACT, 0GQN. .38
{The thres resuits agres for ¢ = 9, = sin"? (A/22) = 38-7°)
(Reprinted from Yee and Feisten, 1568)

20009 Aco]

] 0.3 1.0 gn 1.8 2.0

Amplitude of TEM coupling between edjscent persiiei-piate wevepuides of equal
width d
- = = = gingle ditfraction only
escsseo gingle and doubla diffrection
——— gingle, doubls and tripla ditfraction
{Reprinted from Driessen, 1978)
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Note 2

' EQUIVALENT CURRENT METHOD (ECM)

ol

ELP) > if P>c (i s=-lel)
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e

Flpy| o~ £SO
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L S<</e/ y
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a Complex amplitude § Lo e KL%
if the diffracted ray caldtic dinectim
- U forr rom’ the incident §
neflection SAadowr boundary
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D, —> D). Jf F > 1 then the
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7 7] NCE
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Note 2

£CM

l
l | .
The Strength of lfm }:{MO}e deponds

on D whicd is a/eﬁ'necfan% over the Keller
Cone of eaﬂgz di'ffracted )‘za.?d.

r !

= =d , A A A -/ ’
y :[J(p)gé; (P)~~;f§"§§[kxexzé‘+ ){RxMé‘].g_ 2788

1 L !
L o — @dge) _ _ _ _ _ _ o _
I—1@)=I(2) 1@'u any
M—>M@Q)=m(L) poimt on’edge .

NOTE :* The albove T &M ch e with the
( olqenver Jaca.z‘ign ,l!c it )

R=[%-%7
¢ Ep) G well behaved if Pac.

The obove concept w5 am mz‘gf!mz‘ﬁ. of wotk -@
>R, Fo Mcllar (Proc. IEE", Mar.'sé ; Mar.'s7; Sept. s 7)

| — Ryom ,C.E ¢ L. Peters independently (of Mitlar)
aecved at the above poatilate. For P rnot
on Kelln cone (L PB#Ef) , they el I ¢ M
Fexed lo ther values on the Keller cone.

(IEEE TRANS. AP-7, pp. 292-297, 1769 )

f"

-

- > knéﬁ"if’.ﬁ § T.8.A.Senior allowed I § M o

| -—22 .def;’ned fo% P evem oulside the keller cone
ewridtically allnrng SinpB, tn D (contained in I§M)

o be replaced by {[S‘Tn,_eo}%,g'. (PRoc. lege , Nov. 74

-——
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Note 2




Note 2

EcM (contd.) .
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Note 2

R MK e Lo

R N T L S U

cocnlumumx;mmu (IEEEAP TW.', Maua l"174),,' ¢ E
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mLIGR
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Fig. 3. Elevation pians pattern of coax in 48.0-in dismeter
d gound Fig. 5. Elevation plane

pattern of M‘ aperture in 48.0-in
@ =

fo2.1 Gite
7ig. 4. Elevation plane pattemn of coax in 48.0-in square ground
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Note 2

MODAL RAYS

D AP -t O
“ HMODAL RAY ANGLE
cosd, o 2
o o= -t 0
(a)
y MODAL RAY DINECTIONS

izl

CIRCULAR MODAL
RAY CausTiC

(c)

WHISPERING GALLERY
WODAL RAYS

CAUSTIC CIRCLES

(d)
Fig. 6. Modal rays inside uniform waveguide geometries, (a) Parallel plate

waveguide. (b) Rectangular waveguide. (c) Linearly tapered waveguide.
(d) Annular waveguide region.
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Note 2

PATHAK AND ALTINTAS: MODAL COEFFICIENTS FOR WAVEGUIDE DISCONTINUTTIES (Rac!io SCL'CﬂCC )
NOV' - DeC . lq 88

Fig 6. Modal reflection from the open end of a parallel plats
waveguide.

1 (8x\2(=1)" D,(5,, 5,.. &,)
M”"""’[”K(I)J R

s 1 (87\'371D,(3,. 6., a;)
¢ M “’""['n(fk) 137 >

x ity FOR TE CASE
FOR T CASE

e o (2 2) o - (52
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Note 2

PATHAK AND ALTINTAS: MODAL COEFFICIENTS FOR WAVEGUIDE DISCONTINUITIES

%
E |
] o.st 3* -/

/SRR

g e e —
Q 10. 20 30 40 S0. 60. TO 8Q 90
ALPHA (DEGREES)

Fig. 11. The geometry and VSWR of a born antenna The
dashdotted curve denotes only throat comtribution, the solid
curve denotes throat and aperture contributions, and the dashed

lins denotes moment method calculation.

EFF. MAG.
10 0.1 0.20 0.25 0.%

REFLECTION CO

‘l..ll-l...‘.‘.‘ll-lll‘l..-‘..

5 20 2.5 3.0 35 %0 w8 50
FLRARE LENGTH (LAMBDR]

Fig 12. Magnituds of the reflection from the two-dimensional
E plane secioral horn as a function of the wavelength. Here,
b-lﬂﬂ.hnhanbﬂ)-!l.ﬂm.ud%-nr.m
solid curve is from Jull [1972), and the crosses indicate results of
the present analysis.

Fig. 9. Juaction between two linearly tapered waveguides.



Note 2

. (FRoM: Chuamg § Pathak) .

SIS TRANGACTERS CN ANTIDOAS AND PROPAGATION, VOL. 57, JD. 5, MARCY 1909 .

= Pafﬁak, AH. ;A.Affthfauin’. Model refiection osefficiems des ® n facidemt TH;; mode b @

Radio S’c-(.'ence) Vaf_zg)#é) Sps e s gl — ol i -
Nov.-Dec. 1988 .
extended the woe of
non-rigotoud ECM Yo ¢ b
miternios )a?/.'am, =
Only M {ype eguivalent ) i ] R R
Curnemls 2emawn of MR AR T

mtenios geom. W PEC.

-»> c/mw;z,,c. W. § 2 K. Pathak
(1EEE Thams. AP-37, Mak, §9)

€ woed thesw onternior
equcval. Currentls o -
fend modal keflecthon

Coe{¥4. £02 open.-ended
m'héﬁ I/Jfb hfﬂl”ﬂ//l‘/ﬁl
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Note 2

Diffraction véy a smooth convex Sunface
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Geometry associated with the scattering problem.
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Geometry associated with the radiation problem.
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Note 2

xfca.z‘fo)wng Protlemn (3-D case)
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Note 2
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Note 2

—
(P H.Patbink et al. ,IEEE Thana. AP-23, Sept. 80, pp 53/.‘49

Surface diffracted ray path
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Note 2
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Note 2
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Note 2
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Note 2

c Radiation Protlom (3-D)
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Note 2
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Suntface diffracted ray caudlic dislance
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Note 2
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Note 2

CONVEX
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Ray tube and ray coordinates for the lit region.
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Note 2
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Note 2
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Note 2

TO P, IN PAR ZONE

| P

ARC LENGTN FROM Q° TO 0,5 ¢,
ARC LENGTN FROM Q° TO Qps 1,

POINT
SOURCE

Q
Oominant helical geodesic surface ray paths froms source
point at Q° to points of diffraction Qy and Q2 on a convex

cylinder. The angles ;' and <3’ stay the saze with respect
to the generator (or the 2 - direction) of the cylinder.

Helfcal gecdestic surface ray path from Q° ts Q) of aleve
Figure:. on a developed cylinder.

(a) Geodesic surface ray (b) Geodesic path on
path on & cone a developed cone

A typical surface ray path on a semf-infinite cone.
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Note 2

(P H. Patbok § N, Wamg , IEEE Thand. AP-29, Nov.'81 , pp. 7//-9zz)

3-D Coupling Lolutim
A Swrface fields on a conducting dphere :
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Note 2

Sumlarly, the surface fields dE. and dH. due to the source
dp¢(Q’) are given by
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dE, 212" -—4’; dPe(@)
o2 2] 0 s
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Note 2

8. Surface fiekds om a conducting
cerewdarn  cylinder :
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Note 2
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Note 2
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Note 2

- i
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+ 5y é @ - 7ey) J

+#n [fo ;’ ) - V(E))])} DG (ke).

Similarly, the surface fields dH, and dE, due to dp, on an
arbitrary convex surface are given by
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The generalized Fock integrals J(§) and 7(F) for the arbitrary
convex surface are given by

i ke |33
®)  2m(@ (@K | (3]
? = ke 7 1/2

= L~ "~ 1 V N
©= Zn@wmex]| "®

Alder

- 'V A L. A s2ar ')

241



Note 2
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Note 3

LABORATORY

SlectroScience

~1

Some UTD code developments in USA
during 1980’s — 1990’s
The Ohio State Univ. (OSU) ElectroScience
Lab. (ESL) UTD based codes:

(a)OSU-ESL NEWAIR code
(b)OSU-ESL BSC code

« Complex radiating and scattering objects
modeled by simpler shapes consisting of
ellipsoids, spheroids, cylinders, cone frustrums,
flat plates, etc.

SlectroScience ﬁ

LABORATORY

Fig. 10. Radiation pattesns of a radia) ot In & cone.

243



Note 3
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Fig. 12.  Radiation patterns of aniennss on a prolate spheroid. (a) Pertains jo the patiem of a 4* direcied monopole an-

tenea (at the source location In Fig. 11) (b), (c), and (d) Pertains 10 the pattems of an 2-directed rectangutar slot (at
the source koeatlon in Fig. 11) on a spheroid.
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T(Q') as a function of a’ for a circular cylinder

Radiation patterns of a Lindberg crossed slot antenna
(phased 90° apart) on a prolate spheroid. 8 = 75°

7," and 7, denote principal surface
directionsat Q'.
R, and R, are principal radii of
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Note 3

Radiation pattern of a magnetic dipole located parallel to axis of an elliptic cylinder.
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Note 3
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Note 3

-]
. 1.991°
-10f= —~e—
a
°
T .20}
s
[-] -
8."0 = l b 0.9.
] ¢:0.4
8 .
-‘o pu—
«30 = 28 8 [ EXACT MOOAL)
— PINY
-60 b= e se OSV
°
7 L ! ] ! L=
[-] 30 [ -] 90 120 190 180

Isolation of axial slots on a conducting cylindes, ¢ = 1.991";

& (AZimuTHAL $LOT STPARATION IN DLGRELS)

Z¢ = 0; frequéncy = 9 GHz.

20 L0G IS, 1 tem)
v
L)

~80P= emoam MODIFIED PLANAR

s s s {EXACY MOOAL)Y
————— FULL FORMULA },,;‘,

-

.0 o QSY

P 1 | - . |

- 70!
-]

Isolation of axial slots on a conducting cirl.inder a=1991";

» €0 20 120 180
¢ A21vyTiAaL SLOT SEPARATION IN DEGACLES )

Zg = 1.50"; frequency * 9 GHz.

247



Note 3
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Note 3

C. L. Yu, W. D. Burnside, and M. C. Gilreath, “Volumetric pattern analysis of
airborne antennas,” IEEE Trans. AP, Sep. 1978.
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Note 3

SlectroScience

Comparison of Measured (NRL) and Calculated (NEC-BSC)
Antenna Isolation with Receiver Moving above Center of Fuselage

wings not present

> includes double diffraction
x
[e] e prosELLR
: 60 7 - 1~ 12 GHz (meas);-I
. @ i‘. 1 -;j‘_“- + 12 GHz (calc) |
-g Aogiy
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Receive Antenna Distance from Nose (in.)

Limitations of Existing UTD Codes

* Existing UTD codes such as NEC-BSC and NEW-AIR have proven to
be successful over the past two decades.

However, these codes are based on the approximation of the
electrically large airborne platform in terms of canonical shapes, which
is a complicated task.

* Moreover, a canonical shape representation may lead to

inaccuracies.
» Very limited capability to analyze material coatings
be
< FLYING RADAR TARGET (FLYRT)
r B e s e e Soa
o o :
BENT PLATE
¢ R
< ANTERKA }x" ‘R
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! ag o ——
L3 (- B SR SU—
FLAT PLATE F\LA'{
Ereimalnties HOSE WING
sl SECTION
Canonical representation for NEC-BSC Canonical representation for NEW-AIR
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Note 3

Previous Work on Thin Material Coated
Metallic Wedge Structures

“ Material coatings are generally replaced by approximate boundary conditions (e.g. impedance Boundary Condition [IBC])

«  Solutions to canonical problems with “approx.” boundary conditions formulated exactly via ﬂl_emﬂqpf_(]ﬂ_l-ﬂ or
Maliyzhinets (MZ) methods for surfaces made up of planar structures. Ray soilutions extracted analytically rom them via
asymptotic procedures.

. W-H method:

— J. L. Volakis and T. B. A. Senior, *Diffraction by a Thin Dielectric Half-Plane”, IEEE Trans. AP, Dec.1987

— R. G. Rojas, “Wiener-Hopf Analgsis of the EM Diffraction by an impedance Discontinuity in a Planar Surface and
by an Impedance Half-Plane”, IEEE Trans. AP, Jan. 1988.

- R.G.Rojas and P. H. Pathak, “Diffraction of EM Waves by a Dielectric/Ferrite Half-Plane and Refated
Configurations®, IEEE Trans. AP, June 1989.

— J.L.Volakis and T. B. A. Senior, "Application of a Class of Generalized Boundary Conditions to Scattering by a

» Metal-Backed Dielectric Half Plane®, Proc. IEEE, May 1989.
— V. G. Daniele and G. Lombardi, “Wiener-Hopf Solution for Impedance Wedges at Skew Incidence®, IEEE Trans.
L] AP, Sep. 2006 .
*  MZ method:

— G. D. Maliuzhinets, "Excitation, Reflection and Emission of Surface Waves from a Wedge with Given Face
Impedance®, Sov. Phys.-Dokl., 1958.

~ R.G.Rojas, ‘Electroma%neﬁc Diffraction of an Obliquely Incident Plane Wave Field by a Wedge with Impedance
Faces®, [EEE AP, July 1988.
~ R.Tiberio and G. Pelosi and G. Manara and P. H. Pathak, 'High-FreguEeggly Scattering from a Wedge with
T

Impedance Faces Hlluminating by a Line Source, Part I Diffraction”, | ans. AP, Feb. 1989, see also IEEE
Trans. AP, July 1993.

- M. A. Lyalinovand N.Y. Zhu, “Diffraction of a Skew Incident Plane Electromagnetic Wave by an Impedance
Wedge®, Wave Motion, 2006.

Approx. skew incidence solution (MZ) for imp. wedges based on modifying the HP solution
- H. Syed and J. L. Volakis, *Skew incidence diffraction by an impedance wedge with arbitrary face impedances”,
2 El magnetics, Vol. 15, No.3, 1995,

An Approximate UTD Ray Solution
for Skew Incidence Diffraction
by Material Coated Wedges of Arbitrary Angle

T Lertwiriyaprapa, P. H. Pathak and J. L. Volakis

ElectroScience Laboratory
Department of Electrical and Computer Engineering
The Ohio State University

URSI, Chicago 2008

* Present solution based on spectral synthesis.
+ Solution useful and accurate for engineering applications.
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Note 3

[
Numerical Results
(3-D Junction Planar Material Slabs on a PEC Ground Plane)
*Comparison of UTD-MZ, UTD and MZ at r=54, ¢'=45°, f0=655, r=4/20,
gro=2, uro=4, ern=5, and urn=1.

~t e

s b - 1) IR
Groundg Materiat Junction , N Gmum‘ewn/ﬁate«ja/{mcﬁor,f
PN I ~ L i PN I ~

-
.

- ¢ ~
v, * X

Numerical Results
(3-D Material Coated PEC Right-Angled Wedge)

_

Total Field
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Note 3

Numerical Results

(3-D Junction Planar Material Slabs on a PEC Ground Plane)

«Comparison of UTD-MZ and MZ at r=104, ¢’=45°, f0=65° r=1/20, ero=4, uro=2,
ern=2, and wrn=5.
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Numerical Results
(3-D Material Coated PEC Half Plane)

«Comparison of UTD-MZ and MZ at r=104, ¢'=45° f0=65° r=4/20, ero=4, uro=2,
ern=2, and urn=5.

3

T 1 i T T 1 T 0 T T T T T i T
— t t t 1 t 1 ! — . T 1 t t . 1
o Frrpl ] MR U RNy S S
B OEMEHA -, e ] e e e 1 /IV\\I 1 t |
2 ula il .—\J’:QYTV ) :“\,,_\, : !;_w_ . I e Ty
. l t t t i 1 | \M_
2] s St et il Sl ety St ﬁ_w__..L..__l__-L__J_t}L‘.
t l l t l I t - | 1 l 1 I
100 I ! I 1 1 ! 1 80 ' I ' I 1 ] '
0 S0 100 150 200 250 300 350 ° 50 100 150 200 250 300 350
¢ in Degrees ¢ inDegrees
[ 2
' IS SNy Ny t ] I 1 1 i
A e d e e N e b e ,_o {\(\f X V.».wr --r--.l---_
) ) l\l | | I g-zo-l YF% _:Af ! |\ .......
B 40 L e L ST s 1] 3 I e t
2 P = MR a4 PR
I 60} B i i w | 1 I t t )
! ! t ' i Bl s Tt el e it '_\3
80 1 L 1 L i L L 80 ) ! t i I t 1
0 50 100 150 200 250 300 350 ° 50 100 150 200 250 300 350
| ¢ inDegrees ¢ inDegrees
Wil

28

 Total Field,

14

253



Note 3

Numerical Results
(3-D Material Coated PEC Right-Angled Wedge)

» Comparison of UTD-MZ and MZ at r=10/, $’=45° f0=65°, r=4/20, ero=4, uro=2,

ern=2, and urn=5.
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Numerical Results
(3-D Material Coated PEC Wedge, WA = 540)
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Note 3

A UTD Diffraction Coefficient for a
- Corner Formed by Truncation of Edges
in an Otherwise Smooth Curved Surface

S
$
)
F.
g
R
“)

Giorgio Carluccio(!), Matteo Albani(), and Prabhakar H. Pathak(®

{1) Department of Information Engineering, University of Siena
Via Roma 56, 53100 Siena, Italy, http://www.dii.unisi.it
(2) ElectroScience Laboratory, The Ohio State University
1320 Kinnear Road, 43212 Columbus - OH, USA,
http:/lelectroscience.osu.edu

IEEE International Symposium on Antennas and Propagation
and USNC/URSI NationalRadio Science Meeting
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UTD Vertex Diffraction Coefficient

Shadow Boundary Cones (SBCs) and Shadow Boundary Planes (SBPs):

SlectroScience
L. ABORATORY
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Note 3

UTD Vertex Diffraction Coefficient:
Numerical Examples

P =(-1,-L1)A p=45° P =(-1,-L1)A xz plane scan
|ﬁ=0_5(1,1’\/5) r=134 P=(O,l,0) r=134
IA? =1Am
TA¢=1Am -180°<&<90° 1 ,.. 1 ,. .
=Xy ={X + Edge Directi
3|> JE( ) «/5( }') ge Directions
b=0.14 h=0254 b=0.14 h=0.254

== UTD “le = v |
JOH = UTD + Veriex e UTD + Veriex
“e et MoM deIBOL +otc MoM d=24 2%
5 (= MoMdmITOA | > i : 0 7 LS _ . === MoM d=2342 |
-180 -150 -120 90 60 -30 0 30 60 90 -270 -240 -210 -180 -150 -120 90 60 -30 O 30 60 90
J (degrees) 1 (degrees)

We consider a smooth convex parabolic surface -
illuminated by an electric point source

Scan Center on the Vertex A
r=34,0=25°-180°<9<0°
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Note 3

Remarks

» A UTD diffraction coefficient for a comer formed by truncation of edges in a

smooth curved surface was presented.

* A PO diffraction coefficient is derived by asymptotical evaluation of the PO

integral, to understand how the surface curvature affects the diffracted field

previous PO result.
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transitional behavior.

« Valid for astigmatic ray tube illumination.

« Can be extended to include thin material coating.

* The UTD diffraction coefficient was obtained by heuristically modifying the
UTD diffraction coefficient for a corner in a flat surface, on the basis of the

« Numerical examples show how the proposed diffracted coefficient smoothly
compensates for the abrupt discontinuity occurring when the GO field or the
singly diffracted at edges abruptly vanish.

A UTD Analpsb of 1he Radialion and Mutnal
Coupling Assacinted with Autennas on a Smooth
Perfectly Conducting Arbitrary Coavex Surface with
u Uniform Material Coating

P. Muak* and P.H. Pathak
The Obio State Univezsity ElectroScience Laboratory
1320 Kinnear Road, Golambus, Obio
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Edge excited surface rays
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Sk
‘\) ently UTD solution has been obtained for iSB and SSB far
4

» Work is in progress to obtain an asymptotic solution useful for

gmeering applications when ISB and SSB regions overlap.

*
Conclusions
29 °© Keller’s original GTD is not valid at and near ISB, RSB, SSB (i.e. in
M SB transition regions).
* UTD developed to patch Keller’s original theory within the SB
3 ; transition regions.
=
'§ C « GTD corrects GO, and GTD = GO + diffraction
-
\O < + UTD corrects GTD, but usually UTD - GTD outside SB transition
g ; regions.
§m- UTD ray paths remain independent of frequency.
“ <
© «  UTD offer nalytical (generally closed form) solution to many
complex problems that can not otherwise be solved in an analytical
fashion.
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Note 4
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Note 4
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Note 4
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Note 4

AF-2
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Note 4
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Pﬁga'cnl 7. ﬂea?# of O ffraction (PTD)

© Ufimlsev (1957): extended Brauwmbeks
approach to edge difractim
w'ni the method of-
edge wanves ot PTD,

e PTD Ccorreclts Po. fwdt ad GTD correcls G.o.

PTD field = [P o. fietd | + [edge wave fieltd]

/ % \a& ),
nadiated by < o ek

G.0 cuwrerenls e cnnemd /
component /.

o PTD )zeiuc'/wl am én{egxza.fc'm over the
Swrface curnrents.

« In )z.ez‘)zo:r/ecz‘, ad might be &x,becz‘ea?, the
PTD onlegrals reduce to the GTD «f
Zose tntegrals cam be evaluated iin
lored frm via agymplotic methocls.

* Tn contrast o GTD, the PTD fas deen

° developed only for edged 4tructuns.
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Note 4

Er (P~ ES ()4 EXp)
Wt ere é":(ﬁ) fepresentd a correction o PO.
3¢ Ufimitey di'dd not ﬁncf LECS(P) c&'x‘ucz‘% via
am (}nfeg/m{[m 0;\741 5 mdlead te Ffoumd

Lf Jna&'aecz‘/y.,&n il otigunal work.
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Note 4

e Connection between GTD & PTD :

= = —)
EPTD(P) = E(P) + é;m[/’)

If E; (P cam e approximated asymptoheall,

n clooed form, them

=s = -5
E o n(P) = E5,(P) + E(P)
PT D o 2 \ci )
~E(-U)+ETTU 2 E(@)D, \-f e¥A*
N—

o's ;(egS") —

fflom PO

L

C + EL(Q). b:v_ /(og e:/'ksc/
SUe+sY

. ' ' ' - ecd
£, (P~ E'U 4 EV+ El@) [q,owv]'s/?(?)’e

However :

- ¢ ' -. o b J
=y A} =Y, .Y ¢ = e - kS
EG_TD(P)N EVUV+E U +E(@)-De|/7i._d e
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Note 4
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At'nww‘u'/&'&d wn fmf ;’M,f for the
Condi'llond ?-7? = &% )? ; s"\-)?:aﬁ.ﬁ .
¢ Vs Leveloprment wadg preented Ly:

Butotin, 0.1 § P Ya Ufimbsey (Sov. Phys.
Acouat. , 32(4) J’ujy-ﬁuj, 1986
SUBMITTED MAR. 27, '8’5') DLoQ acowatie caqe

o d Uha&,éwalmu‘@ Gy :
Michaeld (1EEE Thand. AP- 34, Tily 1986 ;
SUBMITTED Tuwme 24, 'S’J') -f-vz Zbe EM caqe.

¥ NOTE ! PTD regiines hiegqration.
PTD Cammot vnclude melicple
interactiond eauly ; hence 670/,rp
Couwld e e'/m,élaye % account for
mudtiple vnterachond amd added & PTD.

Yoo X | G7D '
?M{M@%’Z?giﬂ e/%-g/égg;d 3 %a:@ :
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Wide Angle Racliation from 2
Reflector Anfenmad uaing UTD

(Ra.z‘nw‘/u') _kougaWnﬂ'am f'/’a.z‘ﬁa,,(') /767).

Figure 1. Reflector Antenna.

268



y
A
4 g P
A ql B
e
REFLECTOR ; d,
EDGE 1
2o
5 X
F
4 7
Ip 7
¥ 4 Ve A
v ez
Q2
(a) FRONT VIEW
y
- D
If AR P
Q —
A -—
I R
/. A
o /F =2
A
1z
Q;
(b) SIDE VIEW
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Figure 7. Geometry of the edge diffracted rays in
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{a)
REFLECTOR ANTENNA AND RAYS FORMING

E REAR AXIAL CAUSTIC
Aa l
1
| (b) {c)
DIFFRACTION AT EQUIVALENT EDGE
' HAL‘F- PLANE CURRENT

Figure 8.
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POWER LEVEL (d8)

(o eeme==r— DIRECT RADIATOR LEVEL

FORWARD AXIS AT § = 0
SHADOW BOUNDRY AT § « 90"
D=10.65\

FOCAL LENGTH = 2.66 )\

~40}—
=50}
=== MEASURED VALUES {AFIFI)
T = = = CALCULATED vALUES .
- 60f— ]
’
¢
| | | ] I i I l
0 20 40 60 80 100 120 140 160 180

ANGLE 8@ (DEGREES)

Figure 14, H-plane pattern of a parabolic reflector with a
dipole feed.
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Beam Methods & Some Applications

Parahalic

42

S
8
S
F4
=
S
&‘(
) [

Generation of a Complex Source Beam

* A beam type illumination is generated by a source positioned in complex space.*
* The location of a complex source is obtained by analytically continuing the coordinates of a source in
real space into complex space.”  _ . v

' = F'=r'-4b; b=bb

» 7' - Position vector to the center of the beam waist.
* b -> Beam parameter related to the size of the beam waist.
* b > Direction of beam axis.

rLet F'=0 ; b=bt = 7'=(0,0-jb)

Electric field radiated by a complex point source with a current that
has the unit amplitude and the orientation of D, in real space

B()-GF17)5, 4 Gi7)-- 221 IT ]

o E’:J(}'—f")-( ) Jx +y*+(z+jbf, Re¥20
# H BITH i 14 H

CSB radiation

kb F ks |+__L st z>0
e e It
[ : z<0

(¥ 5 B Keller nd w. Strdler, Co-pln nyl with an s; ﬂu to Gaussian beam,. J, Opl. Soc. Amtr vd 61, Pp. 40.43, l"ll
*G.A. Deuh-pt. Gluﬂln beam as a bundle ofu-plu rlyl, Electron. Lm.. vol. 7, pp. 684,688, 1971,

‘LB, qul. “Co-plex source pdn ulmlu of lle ﬂdd eqnum ud lhdr uhuo- to lhe propapﬂn lnd mmrlll of Glnnh- Bn-:.
Sympodl Mathematica, 1976,
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Previous work on CSP beam expansion

+ Some previous related work on CSP beam expansions for scalar fields:

— 1. T. Lu, L. B. Felsen, and Y. Z. Ruan, “Spectral aspects of the Gaussian
beam method: reflection from homogenous half space,” Geophys. J. R.
Astron. Soc., vol. 89, pp. 915-922, 1987.

— E. Heyman, “Complex source pulsed beam representation of transient
radiation,” Wave Motion, vol. 11, pp. 337-349, 1989.

— A.N. Norris and T. B. Hansen, “Exact complex source representations
of time harmonic radiation,” Wave Motion, vol. 25, pp.127-141,1997.

— T. B. Hansen and A. N. Norris, “Exact complex source representations
of transient radiation,” Wave Motion, vol. 26, pp. 101-115, 1997.

» The present work is different in that it is applicable to arbitrary EM
source distributions (J,,M,) in fully 3-D problems and unlike most
previous work does not require a knowledge of spherical harmonic
expansions for the fields of the sources to get the CSP beam
coefficients.

t=W equivalence theorem.

-
H
-

SlectroScience

Outline of present
CSP Beam (CSB) Expansion Approach

A rigorous formulation is based on a complex extension of an EM surface

. t

(Original problem) =)« (), i
.
- »
14 —epen
®H) _-TTTTs €0 R 8 €H) s
R AT R
- ') G : | ‘j o \ "
s | (o), (o) ; ol \
< e . o N B ,," .0
& e e
O Edquivalent problem 1 Equivalent problem 2 Equivaient problem 3
psifrriied P e
Oy Jiypay (Only Jtype) (Radmies in the prevence
it} &r A of complex PMC sphare)
(2]
< e 2 . er) . s
- s s s *
es) X o) :
©0) - # [T
Nl L
Complex sxtension 1 -
ple Complex extension 2 Complex extension 3
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Large Antenna Applications

NF-FF Transformation with CSP beams (CSBs) for spherical scanning

* The near field of AUT is measured over a
spherical grid of test points.

» The far field pattern is computed by utilizing the
near field measurement data on sphere r‘m.

* CSP beams (CSBs) launched from complex
sphere I, are used to perform the NF-FF
transformation.

* A numerical matching technique is applied to solve
for the coefficients of the beams representing the

; AUT fields.

t" * A sparse matrix equation is formed by exploiting

A% the local behavior of CSP beams. z| = v

/\‘{ @ oL » The matrix equation can be solved by sparse matrix

AP equation solution techniques.

T, * A preconditioner needs to be constructed for large
e problems.

+ CSP beam approach can be potentially useful for
other type of near field measurements, as well.

T O R Y

~ ’nff!n.gcieu ce

Large Antenna Applications (cont.)

Preliminary numerical example for NF-FF Transformation

* Point sources are distributed over a disc of radius 5x.

» @=525A-j154 so the beams are launched from the
sphere with radius a= 5.25x .

“y » The measurement sphere has the radius r,=15x.

* A total of 1388 beams (and test points) are used in the
expansion. Size of Z is 2776 x 2776.

* Density of Z matrix = 6 % with threshold=104.
Zeros are assigned to the remaining 94 % of Z.

T Exaet |

CSP beam arp., | On average 50 out of the 1388 beams remained
~ e R significant at a far field point.
& w "[\-"- T _l:\?:\j’:\: ] An incomplete LU (ILU) preconditioner is constructed
e A AN to improve the convergence rate (with drop
& T SO tolerance=109).
R/ E . S 1 Density(L) + Density(U) = 22 %.
Y. SR S I .
af <o [ P |
~100° 0 o ) : CPU Time (s)
b (de9) | ILU factorization | 67
Iterations 20
64 tuilen/ S B ] Kbl 11 ]]

32
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* More generally,
1 ~a 7 rra  }gp
Vo= [(Ee-7,-a -1, )s,

:-‘é t Sp
[\\J which includes probe compensation for finite probes.

AUT generate (E “ H° )
js, M ;, definedon s, encapsulating probe.

SlectroScience
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Symbolic complex
spherical surface of radius

~ . 2 2
a,=a,— jb a, >+al+b

Large Antenna Applications (cont.)

CSP-MoM for Fast Solution to Radiation and Scattering by Large Objects

The subsectional basis elements are RUREY &
combined into groups of approximately equal 53 ¥ 3 N
size. - \ .
Interactions of the near neighbor/self groups G / ' | -
are performed in the conventional manner. /

For well separated groups: fia .é‘_}_% " / a,
— The field radiated from each basis 5 ’f«r *E ; =
element is expanded into a set of CSPs % T i &£ &
radiated from the group of that element. o
— The field interactions between a pair of
groups are performed by reacting their
equivalent CSP sets.

— Since CSP beams are localized wave
objects, only a small portion of the CSP
beams from each group contribute
significantly to a group interaction. <» Fast
evaluation of group interactions.

£
=z
-

SlectroScience
LABORATORY
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L ®
Large Antenna Applications (cont.)
. Numerical example for CSP-MoM
T *  AnXx-polarized plane wave is normally incident on a PEC
= square plate of single dimension D=7 (N=8064).
L\‘Q | *  MoM formulation: Rooftop basis functions on a rectangular
W v mesh (0.1A x 0.14) with Galerkin testing.
3 - CSP-MoM Standard MoM
= « CPU (3) cPU n::ém.y
Q|0 Sol. for beam coofs | 3.8 e M8)
': - . ) Filling the matrix | 1490 Standard MoM 992
Yl pumm 2 [y [ | Lo e
Filling for near/seff 73
E s Time per iteration 1.61
w0
@ Bistatic RCS comparison on the $=45° plane.
& m : : T : ; ) ‘l T 7 T T
“ < PP Sy Y G B S\ 4——?;304”1 i‘o - W :—;::::_ r::::::—:—: Hln
] ,,_:_ o _:_ gy ;_ :_ _:_ _: S ——op) it
@ 1 (AU T PO T Eveme™ rempsr m
i 20 - o 1 l ) SR IO P ! Errnae e ot [0} iy
1 ]
RN | RN B it e e
,f o ~toatl|s ’ 14 1\*{1"»‘\—'— 4 W e SRR RERIT)
IRIEEEE 1 ol : SRyt
ELAM iivaw Jorbi s bt s
I I (1) [N t 1 f 1 l
w oL whie T L e
67 .& é -410 .zloe m;m“ ; 4’0 "ﬂ l’ﬂ 10 10 “m 10 10

Complex Source Beam (CSB) Diffraction by a Wedge

« UTD for real source excitation of wedge developed
via first order Pauli-Clemmow method (PCM) [1-4] for
asymptotic solution of canonical wedge diffraction
integral along a steepest descent path (SDP)

«First order PCM not strictly valid (for poles crossing
the SDP away from saddle point); hence analytic
continuation of UTD for complex source location
without further study is questionable!

*First order Van der Waerden method (VWM) [1-4] is
valid even where PCM fails.

0 « However, one can show that the first order VWM method, upon using a key rearrangement

- (and comb'nati n)of terrns, iields:
( &) Y3

X » Next, for the specnal wedge case of interest, it is shown analytically (and verified numerically)

o that-

Note: PCM — UTD for wedge
_; VWM=EPCM — EUTD for wedge

> [EUTD = UTD + A~ UTD (since Ais negligible)!

S o b i R R el &?'fii"' i
B o b e i 'ztxgwfv{éws i miz:e
5‘9 il Egsigf.i'f ’f;‘;i.%igr

cﬁlectro-Sden

2 AT B
R

§ -s&-
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%o

Complex Source Beam (CSB) Diffraction by a Wedge

in f diff total diff otal
E"® E™ Eumo By Eeuro Eeurp
X = =
0 S L e T —
0 50 RSB(135.86) 158(224.14) 300

%5 223 2235 224 245 225

e 4.Deg

255 26

4.00p

(cont.)

4.deg

+ Additional term in EUTD solution
2 s -
R

b
50 V,aV3; |

B

,(§+§-)+m[ﬂ] 0 8 100 150  iSBz2e.14) %00
n

2 $.deg
O B Bt Bt
b G-l ) 3
>
0 50 RSB(135.88) 200 250 300

Adh

Numerical Result 2

@&i)ja e

4.Deg

W o1e 12 nzs

o

Complex Source Beam (CSB) Diffraction by a Wedge

(coopt.)

i cref g ol At  Ceow
16} | £ E Euro Euro Eeuto Eeumo

\

RSB(12.37) 150 200 sBearen) | 300
¢, deg
» Additional term in EUTD solution
e
4 :i vz v v V3vy
. ! ; =

. (- (3 ny, (B) ;
vile, (ﬂ‘»=‘m n;j
P .9 ¢

100 150 200 1SB(247.67) 300
4. deg

x(?+§')+cot[”§"ﬁ') l;_ %0

I
T PR b
2 A v2 Vz"’;'vzp‘ —

e - i

L] 50 RSB{1123350 200 250 300
A ideg.
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Large Antenna Applications

Fast analysis of the reflector antennas. Antenna radiation in the presence of radomes.

A
Reflected &

/|« Diftacted Fieks of
o g each CSP beam

o

)

=/

. Feed
Radiation
Pattern

. Radome

“)“ uence \ [ 5
: @ i (4(3‘:;::" cSPbeams > Antenna

-2 O. A GB -UTD (PO based) method was previously The field of the antenna is first expanded into
Q- reported in [1]. a set of CSP beams.

‘0 < With the CSP method, feed pattern is expanded Each beam is next tracked through the
©|r intoasetof CSBs. radome.

..‘. o  Each CSP beam field is scattered from the The transmitted beams are summed up at
@ reflector by using complex extension of UTD. the observer location.

& % A2-Dcasefora single beam illumination was Complex ray tracing can be employed for

“ < reported in [2]. beam tracking through the radome (3,4].

—

This new fully 3-D CSP-UTD approach (UTD for
beams) is expected to be more accurate then [1].

(1] H. T. Chou, P. H. Pathak and R. ). Burkholder, “Novel Gaussian Beam Mecthod for the Rapid Analysis of Large Reflector Antennas”, IEEE Trans. Anteinas

Propagal., 2001

[2] G.A.Sucdan and E.V. Jull, "Beam diffraction by planar and parabolic reflectors,” 1EEE Trans. Antennas Propagat., 1991

[3]1 X. 3. Gao and L, B. Flsen, “Complex ray analysis of beam through r | radomes”, JEEE Trans. Antennas Propagat., 1985

(41 ). ). Macid and L. B, Fdsen, “Gaussian beam matysss of propagation from an extended plane aperture distribution through dielectric layers, part | - plane
73 layer,” 1IEEE Trans. Antennas Propagat., 1990,

CSB-UTD Diffraction by a Curved Wedge

» The present CSB-UTD & CSB-EUTD solution for a
©+y CSB excited PEC curved wedge is obtained by analytically
4f, continuing the UTD solution for a PEC curved wedge
excited by a real point source (or even real astigmatic ray)
to deal with a CSB (or even more generally a complex
astigmatic beam, i.e. CAB) illumination of a curved edge
in a curved surface.

» The CSB reflected from doubly curved surface become an
astigmatic Gaussian beam in paraxial region

he CSBL soluhon is vallé for analyzm CSB/

m?“ﬁ grﬁqr,ﬁ P,arf‘?’,‘g hi 'ef}!“??}@’%’ﬁ Cgfhﬂ““ﬁ i
L e “STI !

e

for a B excx ed 'para 1c Feﬂeci
\ i i ~'T

N ;h#f#& rx“dh; L e

"?,’a '“' e éu,u i)

becil:)mes ‘Mo henl a CSB axie hits the

irfactual reﬂeci'oq pe awyay m t';he edge‘ l u
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CSB-UTD Diffraction by a Curved Wedge (cont.)

Numerical Result : Finite parabolic reflector illuminated by a CSB
d,, =604, h=54, f,, =354, 5=104, pLb, Q,=(104,502), S = (404,100°270°) |

Transverse Plane

\4’
(o} e x
Y
(‘) 50 100 1.;)0 200 250
0, deg
04—
ozl
75 50 ° 50 100 150 0% 250
f.deg

CSB-UTD Diffraction by a Curved Wedge (cont.)
Numerical Result : Finite parabolic reflector illuminated by a CSB
Transverse Plane d,, =604, h=54, f,, =354, b=104, pLb, Q,=(204,602), S =(404100°270°) |
L:C‘ 0'7L —€e™ 2 2 X
W g Eesee =7 .
os-___E 8 - Qe
' . r=5000
.\. B
Reg ¢
7 0 > x
) S
0 5‘0 150 200 250
i
7 L
£0 o 5 % 150 200 250
76 o, deg
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CSB-UTD Diffraction by a Curved Wedge (cont.)

Numerical Result : Finite parabolic reflector illuminated by a CSB

Transverse Plane ldy, =504, f,, =304, b=104, =5 Q,=(-174,102), §=(404,0°90°) |
02 .

2 E"
u\\i | | —— geseEUTD
= 038+ | pessuto

CSB-UTD Diffraction by a Curved Wedge (cont.)

Numerical Result : Finite parabolic reflector illuminated by a CSB

Tranéverse Plane | |d,, =504, £, =304, =154, pLb Q,=(~204,352), S = (404,10°0°) |
o ] p———
u\\"' ; ECSB-EUTD
- 5L ECSBUTD |
o)
QPS °r
: x
8P
Q-
W< ' ;
Symmetry Plane 9, deg
§ e
& m ECSEiuTD
¢ 18| ——goseu™
N
g
05+
50 "o 0 700 j\ﬁo 200 250
S 2. deq
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CSBs/GBs Illuminating a reflector

i e—Jkr/ ) I % i |
7(Ts) ~ [0rFe(7s) + drFu(7s))
Reflected & B
Diffracted Fields ;
of Each CSB/GB L(7p) ~ — Yoiy x H(7y) |
@ Y >
I~ Feed
9 G AN Feed Radiation
bxy ¥ rea \ Radiation
‘o i S % | Pattern
AT ~ ’ N M |
©| Sequence of \) .. i (=) ew ' (7 o |
5 N f("f) = z: Z ComH i (F )&’ _
8| ossors | e Lo £
k&) v%%ntenna GB

Expansion

L

n = launching points-in- féed-plane
m = number of GBs from each n

Offset Shaped Reflector for CONUS Contour Beam Using GBs

D =854
= < 200 GBs
0

Time < 5 min/iter

alize arized contours bassd on the GB approach CONUS |
| coverage by a shapad concave reflecior with a feed pattern at 12 GHz
_ with /=18.61. _Appn»glmnd_y gOOG:B"a‘wam used

NUM-PO

Time =5 or 6 hrs/iter

SlectroScience
LABORATORY

Approx. 30 iter’'s*

, o-polarized gain contours based on the numerical PO |
80 Integration approach for the same shapad reflector case as a§wm Ly | ?
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Conclusion

* CSP beam expansion methods for EM radiation are
presented employing three different variants of the

U surface equivalence theorem.
Sl * The analytical properties (validity region, truncation,
.§ o etc.) of the approach are investigated.
S
‘2; « It is shown that accurate and efficient field
=o representations can be obtained by conveniently
- 0
8 truncating the beam expansion.

<
L * It is demonstrated that the expansion idea is applicable

to a class of EM radiation/scattering problems.
81
Numerical Methods
= Hybrid Methods are
o required for in-situ
O
analysis

[-*Yidd
: 14 Source:
80 8 http‘;//vo/tvgv»;.f;atko;i‘rtfoﬁfko-
a - & S M product-info/technical
"5 0§ R ~— FEM

o [T}
da>-%1)

Band Width/Complexity Materials
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Hybrid Method & Some Applications

» In many applications, large antennas (arrays) and large
antenna platforms contain both large and small features
in terms of wavelength.

eFor electrically large parts on radiating object, UTD ray
method is useful but not valid for electrically small
portions.

For highly inhomogeneous and electrically small region
(e.g. complex antenna elements/arrays) the FE-BI or
numerical methods are useful, and UTD is not applicable
here.

A hybrid combination of FE-BI (or other suitable
numerical methods) and UTD could handle the entire
problem not otherwise tractable by each single approach
by itself.

a‘p
4
@[~
W
=) [4
38

b
3

.

Conformal Array Configurations

Simple slot phased array in a

PEC Platform

Radome Cover

Flush with Platform
Antenna Array =5

: Elements
Material

Treatment

Tapered
Absorber

SlectroScience
L ABORATORY

Complex phased antenna array
slightly recessed in a convex
platform and covered by a radome

42
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Proposed Hybrid Numerical-UTD Approach

i‘(a’ Present Collective
. UTD Solution
- converts numerical
S ; array solution into
‘§ 0 rays launched from
Q- array aperture.
Wi«
8t
S| External Platform Part
3 < Collective UTD rays launched
= from aperture efficiently
excite external platform which
is analyzed by UTD.
85

Local Array Part Treated by FEM, FE-BI

Array+Radome

Actual problem ;Combination

Complex Array
Platform (e.g. part of aircraft)

=
=)

SlectroScience
L ABORATORY

Structure outside the local of
aperture region is ignored

A local array modeling A local array modeling
for FEM for FE-BI
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Slot array on a PEC Circular Cylinder

»

1=

£=9.0GHz
a=100.04
101x101 elements

d, =d,=0651
L =0554, W, =0.2444 .
Scan direction: , =30°,¢, =90° 93 TWs (~0.9%) were used !!

SlectroScience
LABORATOIRY
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Slot array on a PEC Circular Cylinder (cont.)

ol
By 35
l\-' —REF .
‘ 30 TW-UTD e
“ > B 25
S £
ls 0 * 15l’ I
@ |
‘0 < - 10 ' '
O ’ |
5
B8P SR
< < Axial plane cut (scan plane)
K) E r= 100 A (near zone)
REF: 34.57 sec.
TW-UTD: 5.47 sec.
108

54
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Slot array on a PEC Circular Cylinder (cont.)

30
25
L-ffs, 20
\
W g
E:‘ 10
S
§ ! 5 i}
80 °
@~ s 50 0 50
w < | e{dea)
(=] 64 REF .
‘E o == TW-UTD "‘\,\
& 0 20 1
W) < Oblique plane cut: ¢ = 60° 2o . %
- r =100 X (near zone) = '
REF: 38.40 sec. o
TW-UTD: 6.12 sec. o
-50 ] 50
0 (dea
109

Axial plane cut (scan plane)
far zone

REF: 33.48 sec.

TW-UTD: 4.39 sec.

SlectroScience
. A B ORATOIRY

£ (68)

-50 0 50
110
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Slot array on a PEC Circular Cylinder (cont.)

=0

=i
-

T
1€ ()

LABORATORY

SlectroScience

£ (8

Oblique plane cut: ¢ = 45°
far zone

REF: 51.39 sec.
TW-UTD: 6.08 sec.

0
8fdeal

111

Interface between Full-Wave solver and
High Frequency method

Simulate the antenna region with sur-
rounding part of cavity.*

=
“ =8

Take the tangential field on the aperture
opening.

® Let M = —7f x E to be the excitation
source put on the surface of platform:
without aperture.

® UTD code NewAir is used to do the high'

frequency calculation for the sources on

EloctrnSceionuce

the smooth surface™* E
+*
J-F. Lee's DD FEB! code. YYYY
*e !
P.H. Pathak, et al. A Uniform GTD Solution for the Radiation l
from Sources on a Convex Surface. TAP-29, No. 4, pp. 609-22. PEC M

b imnn
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Conclusions

« An asymptotic UTD ray solution has been developed for
describing, in a collective fashion, the fields radiated by
large conformal antenna arrays on a doubly curved,
smooth convex surface.

» The present solution will provide an efficient link
between the local array part to be analyzed numerically
and the full external platform part to be analyzed by UTD,
in a hybrid method for analyzing large complex
antenna phased arrays integrated into a realistic complex
platform.

e The present collective UTD ray solution shows a good
agreement with the conventional element-by-element
UTD field summation solution.

The work presented is done in conjunction with

»

=)

SlectroScience
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High-Frequency Techniques for

Antenna Analysis

PRABHAKAR H. PATHAK, FELLOW, IEEE
Invited Paper

A summary of various high-frequency techniques is presented
for analyzing the electromagnetic (EM) radiation from antennas
in the presence of their host environment. These techniques not
only provide physical insight into antenna radiation mechanisms,
but they are found to be highly efficient and accurate for treating
a variety of practical antenna configurations. Examples to which
these techniques have been applied include open-ended waveguide
antennas, horn and reflector antennas, antennas on aircraft and
spacecraft, etc. The accuracy of these techniques is established via
numerical results which are compared with those based on other
independent methods or with measurements. Furthermore, these
high-frequency methods can be combined with other techniques,
through a hybrid scheme, to solve an even greater class of problems
than those which can be solved in an efficient and tractable manner
by any one technique alone.

I. INTRODUCTION

A summary of some high-frequency techniques is pre-
sented for efficiently and accurately analyzing the elec-
tromagnetic (EM) radiation from antennas in the presence
of their host environment. Such high-frequency techniques
also provide a physical insight into the antenna radiation
mechanisms involved; this property is useful for both
analysis and design purposes.

At sufficiently high frequencies (or short wavelengths),
EM wave radiation, propagation, scattering and diffraction,
exhibit a highly localized behavior. Such a local description
of high-frequency EM waves is given in terms of rays
and their associated fields. Thus the total high-frequency
field at an observation point is given by the superposition
of the fields of all the rays that arrive there, such as
via a direct (incident) ray path from the primary antenna
excitation (source), and via rays which experience reflection
and diffraction from generally different but highly localized
regions or “flashpoints” on the antenna and its host struc-
ture, as shown for example in Fig. 1. In particular, the
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incident and reflected rays obey Fermat’s principle, and are
associated with the usual geometrical optics (GO) incident
and reflected fields. In the case of penetrable objects,
there also exist GO transmitted rays. On the other hand,
the diffracted rays are generally found to originate from
geometrical and electrical discontinuities, and from points
of grazing incidence on smooth convex portions of the
radiating object. The existence of these types of diffracted
rays has been postulated by Keller, via an extension of
Fermat’s principle, in his development of the geometrical
theory of diffraction (GTD) [1]; this ray method will be
summarized later in more detail. Such a rather simplified
and physically appealing picture for the transport of high-
frequency EM energy, locally along incident, reflected, and
diffracted rays, is in sharp contrast to the description of EM
wave radiation at low frequencies that is generally given
in terms of the radiation integral on the currents induced
globally over the antenna and its entire host structure
by the primary antenna excitation. At lower frequencies,
one can either employ numerical methods (e.g., moment
method, conjugate gradient method, etc.) to solve integral
equations for these induced currents, or numerically solve
(using finite element or finite difference schemes) the partial
differential equations governing the total field behavior.
One could also employ a numerical modal (eigenfunction)
matching technique for obtaining the relevant field solu-
tions. However, at moderate to high frequencies all of these
numerical techniques [64] become very poorly convergent
and inefficient because numerical solutions are generally
based on exact formulations that must satisfy field self-
consistency in a global sense, i.e., over the entire radiating
object, rather than requiring a knowledge of the fields in a
local sense as done in the high-frequency approximations.
It therefore becomes necessary to employ high-frequency
techniques for analyzing electrically large radiating objects
in a tractable fashion.

One could demonstrate the local nature of high-frequency
radiation if one begins by considering the radiation integral
over the spatial current distribution induced on a radiating
object by the primary excitation. At high frequencies, the
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Fig. 1. Rays launched from an infinitesimal antenna element on
an aircraft.

phase of the corresponding integrand oscillates rapidly
and produces a destructive interference, or cancellation,
between the various spherical wave contributions which
arrive to a given observation point from the region of inte-
gration over the radiating object that excludes any stationary
phase points in the integrand. The dominant contribution
to the radiation integral then arises from the constructive
interference between the spherical waves which emanate
from the local neighborhood of any stationary phase points
in the region of integration, and also from the end or
boundary points of the integral, etc. A similar situation
occurs when employing a spectral rather than the spatial
representation of the radiation integral; in this case the
dominant contribution to the spectral integral for the high-
frequency case again arises from the local neighborhood
of certain critical points in the spectral integrand, such as
saddle points, poles, etc., while a destructive interference
generally exists between contributions from the remaining
portion of the spectrum. The critical points within the
spatial representation of the radiation integral physically
correspond to the “flashpoints” or points of reflection, trans-
mission and diffraction on the radiating object. On the other
hand, the critical points within the spectral representation
for the radiation integral correspond to specific directions,
or rays, along which the high-frequency field propagates
to the observer. Furthermore, these rays originate from
the flashpoints alluded to earlier; consequently, both the
spatial and spectral forms of the radiation integral yield
the same local picture for the radiation of high-frequency
fields. Indeed, a critical point within the radiation integrand

PATHAK: TECHNIQUES FOR ANTENNA ANALYSIS

of either the spatial or the spectral type leads to the de-
scription of a particular ray mechanism (e.g., ray reflection,
ray diffraction, etc.) thereby analytically demonstrating the
principal of localization of high-frequency fields. Such
an evaluation of the radiation integrals in terms of a
superposition of the contributions from just the isolated
critical points in the integrand constitutes an asymptotic
high-frequency approximation for the integrals. Typically,
the asymptotic evaluation is performed with respect to a
large parameter, ¢.g., the product of the wavenumber (27 /A,
where A = wavelength) and some characteristic distance,
and the asymptotic approximation becomes increasingly
accurate with increase in the large parameter.

It can be verified from an asymptotic evaluation of the
radiation integrals, as discussed above, that the ray fields
exhibit a “local plane wave” behavior; i.e., the rays are
perpendicular to the wavefront (or equiphase) surface in
an isotropic medium as shown in Fig. 2; in particular, the
wavefront is locally plane in this high-frequency approxi-
mation, and the ray field is polarized transverse to the ray.
The rays are straight lines in a homogeneous medium. The
concept of wavefronts and rays is not new; indeed, it has
been central to the development of classical geometrical
optics (GO). One recalls that GO includes only the incident,
reflected and transmitted ray fields. Limiting the present
discussion for the sake of convenience to antennas and
their host structures that are impenetrable, it then follows
that only the GO incident (or direct) ray from the primary
excitation and the GO reflected rays can exist in this case.
An example of this situation is shown in Fig. 3 where
the line source excites an impenetrable structure; the GO
incident and reflected rays exist only in certain portions
of the space surrounding this structure. The incident rays
(directly radiated from the line source) do not exist beyond
the edge induced incident shadow boundary (ISB) and the
smooth surface induced surface shadow boundary (SSB),
respectively. Also, the reflected rays disappear beyond the
edge induced reflection shadow boundary (RSB). Therefore,
GO fails to predict a nonzero field within the shadow
regions of the incident and reflected rays where such
rays cease to exist, and consequently GO cannot describe
the diffraction effects behind an impenetrable structure;
this may be visualized in Fig. 3. The failure of GO
in geometric shadow regions, where the source and its
image are not directly visible, was overcome by Keller’s
GTD [1]. The existence of these diffracted rays in the
GTD can be readily verified via the asymptotic reduction
of the radiation integrals pertaining to various canonical
diffraction problems. Thus according to GTD, the field at
the edge Q g, which is incident from the line source at Q’,
gives rise to edge diffracted rays emanating from Qg as
in Fig. 4. Likewise the incident ray from @’ which grazes
the surface at Qg launches a surface ray which propagates
around the smooth convex boundary transporting energy
into the shadow region. Surface diffracted rays are shed
along the forward tangent to the surface rays as shown in
Fig. 4. The field at P; in Fig. 3 consists of simply the GO
incident and reflected fields, whereas according to GTD
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Fig. 4. Edge diffracted rays originating from the edge Qg and
rays diffracted tangentially from the surface ray excited at the point
of grazing incidence Qg.

the field at P; in Fig. 4 also contains the additional edge
diffracted ray field. The field at P; in Fig. 3 is due only to
the GO incident field, but GTD again requires that the edge
diffracted field be included at Ps as in Fig. 4. The field at
Py in Fig. 3 vanishes as predicted by GO; in contrast, the
GTD predicts a nonzero field at P, which is a superposition
of the edge and surface diffracted ray fields as in Fig. 4.
The GTD field is clearly a superposition of GO and
diffracted ray fields. Just as the initial amplitudes of the
GO reflected and transmitted ray fields are given in terms
of the reflection and transmission coefficients, the initial
value of a diffracted ray field is likewise given in terms
of a diffraction coefficient. The relevant diffraction co-
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efficients may be deduced from asymptotic solutions to
simpler canonical problems that model the geometrical and
electrical properties of the original problem in the local
neighborhood of the point of diffraction. As a result of
the extended Fermat’s principle, the rays diffracted by an
edge lie on a cone about the edge with the cone half angle
equal to the angle that the incident ray makes with the edge
tangent at the point of diffraction as in Fig. 9. In the case
of a two-dimensional problem, the cone of diffracted rays
collapses to a disk as in Fig. 4. Furthermore, the surface
ray initiated at Qs in Fig. 4 follows a geodesic path on the
convex boundary; also once launched, the surface ray field
attenuates as it propagates, because energy is continually
shed via rays diffracted tangentially from the surface ray.

Away from the point of diffraction, the GTD diffracted
ray field behaves just like a GO ray field. However,
such a purely ray optical field description of the GTD
fails within the transition regions adjacent to the shadow
boundaries (e.g., ISB, RSB, and SSB in Fig. 3) where
the GTD diffracted fields generally become singular. The
angular extent of the transition region varies inversely
with frequency and it also depends on some characteristic
distances as will be discussed briefly in Section II. Such a
transition region may be viewed as one through which the
GTD field changes its ray optical behavior, e.g., as from
an incident ray optical type to a diffracted ray optical type
across an ISB. This failure of the GTD within the shadow
boundary transition regions can be patched up via uniform
versions of the GTD such as the uniform geometrical theory
of diffraction (UTD) [2]-[4] and the uniform asymptotic
theory (UAT) [5]. Additional references dealing with the
GTD/UTD/UAT may be found in [6]-[11]. The UTD will
be used in this paper as it has been developed for a variety
of canonical shapes, whereas the UAT has been developed
only for an edge at the present time.

It was indicated earlier that the asymptotic evaluation of
radiation integrals gives rise to a total high-frequency field
in terms of a superposition of the contributions from certain
isolated or critical points in the integrand (which can be
seen to correspond to the field of GTD rays). Some of these
critical points can come close together when the observation
point lies within the shadow boundary transition regions,
and even coalesce for an observer on the shadow boundary
itself. This leads to a “coupling between the critical points”
and the asymptotics must then be modified; i.e., it must
be performed via a uniform procedure which accounts
for this coupling and thus forms the basis of the UTD.
In the UTD, the GTD solution is modified through the
use of uniform asymptotic procedures which systematically
introduce additional factors, referred to as the UTD transi-
tion functions. These UTD transition functions compensate
the GTD singularities at shadow boundaries and keep
the total high-frequency field bounded, and continuous,
across these boundaries, thus keeping the field valid within
the transition regions. Furthermore, outside the shadow
boundary transition layers, the UTD automatically reduces
to the GTD. These transition functions are special functions
characteristic of the diffraction process; e.g., in the case of
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edge diffraction they involve Fresnel integrals, whereas in
the case of convex surface diffraction they involve Fock
functions [12] which contain integrals of Airy functions.
The latter functions are named after V. A. Fock who
contributed significantly to the analysis of wave diffraction
by smooth convex boundaries.

It thus follows from the preceding paragraph that it is
the UTD and not the GTD which must be used in practical
applications to obtain continuous total (high-frequency)
fields (around the radiating object). Besides the singularities
of the GTD at the GO shadow boundaries discussed above,
the GTD and its uniform versions such as the UTD,
UAT, etc., exhibit singularities at the caustics of GO and
diffracted rays. Ray caustics occur whenever a family of
rays (i.e., ray congruences) merge or intersect; examples of
ray caustics are shown in Figs. 5 and 6. In particular, the
diffracted ray caustic at P in Fig. 5 is produced on the axis
of a symmetric parabolic reflector illuminated by a feed at
the focus. The smooth caustic of reflected rays in Fig. 6
is produced by a shaped subreflector which is a surface of
revolution; it is illuminated by a feed antenna located on
the subreflector axis. This subreflector surface exhibits an
inflection point along its generator giving rise to the caustic.
Such a smooth caustic can also be produced by a concave
reflector surface. A curved edge can likewise generate a
smooth caustic of diffracted rays. Ray caustics can become
problematic in the GTD/UTD/UAT computations only if
they occur in real space (exterior to the antenna and its host
structure); otherwise, they are of little concern whenever
they occur in virtual space e.g., within the scatterer or the
antenna host structure, unless the transition region adjacent
to the virtual caustic emerges into external space where a
field or observation point may be located. The failure of
the GTD/UTD at GO or diffracted ray caustics and their
associated transition regions can be patched up through
a uniformizing procedure which again introduces special
functions (or caustic transition functions) to correct the
pure ray solution. For a smooth caustic as in Fig. 6,
the special transition function involves the Airy function
and its derivative [13], [14]; if the caustic curve has a
cusp then one obtains Pearcey functions (related to the
parabolic cylinder functions) [15]. If either the smooth
or the cusped caustic terminates, as might happen when
the reflecting surface terminates at an edge, then one
requires incomplete Airy functions or incomplete Pearcey
functions, respectively [15], to evaluate fields near the
caustic termination. These special functions (or transition
functions) reflect the coupling of the pertinent critical points
in the asymptotic evaluation of the radiation integral as
discussed earlier.

A procedure which can treat more general diffracted ray
caustic effects is based on the equivalent current method
(ECM) [16], [17]. The ECM while primarily useful for
handling caustics of diffracted rays can in some special
cases also be employed to handle caustics of reflected rays.
In general, the ECM, which corrects for the singularities
of the fields at diffracted ray caustics that lie outside
the ISB, RSB and SSB transition regions (where UTD
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Fig. 5. Point caustic of edge diffracted rays on the axis of a
symmetrically fed parabolic reflector.

reduces to GTD) describes the fields within such caustic
transition regions in terms of a radiation integral over a
set of equivalent line currents that replace the original
geometry and its illumination; these equivalent currents
are found from the GTD diffraction coefficients which are
not singular in caustic directions even though the actual
GTD ray field is singular there [4]. The fields in the
diffracted ray caustic region of Fig. S can be treated by
ECM. This ECM procedure, if formulated properly, is a
uniform procedure in that away from the caustic transition
region, the ECM radiation integral reduces asymptotically
to the GTD. In a few cases, the ECM radiation integral
reduces to a closed form result, or it can be expressed in
terms of special functions (e.g., Airy or Pearcey functions)
alluded to above; however, in general the integral must be
evaluated numerically.

The diffraction effects within the GO shadow boundary
transition regions are generally not localized to just the
edges or points of diffraction because they are then coupled
to the GO effects on the reflecting surface, and in order
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to correct for the singularities of GTD ray caustics in
directions where the associated caustic transition regions
overlap with the GO shadow boundary transition regions,
one must therefore resort to a surface integral representation
and not the line integral approximations of ECM. The
physical optics (PO) surface integral approach [18] and
its modifications based on Ufimtsev’s physical theory of
diffraction (PTD) [19], [20] for edged bodies as discussed
in Section II-C, and Fock’s theory for curved bodies [12],
become useful for treating the fields within the overlap
of diffracted and/or GO ray caustic and GO ray shadow
boundary transition regions. An example of the overlap of
the caustic and GO shadow boundary transition regions is
again provided by Fig. 5, where the RSB coincides with the
forward axial caustic of the edge diffracted rays in the far
zone of the reflector. Furthermore, there are also an infinite
number of rays reflected from the parabolic surface which
contribute to the far field in this forward axial direction.
The forward axial direction of the parabolic reflector is
therefore also a caustic of reflected rays in the far zone,
in addition to being a caustic of the edge diffracted rays.
While the PO method in itself gives quite accurate results
for caustic fields in the region of the overlap of the GO
shadow boundary and caustic transition regions, the PTD
which provides a correction to PO can yield more accurate
results outside the caustic region. It is noted that the PTD is
a superposition of PO and the correction to PO as specified
by Ufimtsev.

In general, the integrals in the PTD approach must be
evaluated numerically; only in special cases can they be
evaluated in closed form. In situations where the integrals
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in the PTD can be evaluated asymptotically, they recover
the leading terms of the GTD fields. Furthermore, if these
PTD integrals can be evaluated asymptotically in a uniform
fashion, then PTD can be shown to recover the UTD. The
intimate connection between the PTD and the GTD/UTD
indicated above allows one to view PTD as an integral
version of the GTD/UTD which is valid even in regions of
ray caustics, and also in regions of overlap of caustic and
GO shadow boundary transition regions where GTD/UTD
fails. However, PTD requires an integration whereas UTD
does not. Therefore, it appears to be far more efficient to
employ UTD everywhere except at ray caustics, and in
the overlap of caustic and GO shadow boundary transition
regions, where the more general PTD integrals may be used
to patch up the UTD. While the PTD is a high-frequency
technique in its own right like the GTD/UTD, it has been
developed only for edges as indicated previously, whereas
the UTD can also handle surface diffraction and other types
of diffraction mechanisms. Furthermore, the PTD cannot
account for multiple diffraction effects as easily as the
GTD/UTD; such higher order multiple wave interactions
can become important if the scattering/diffraction centers
come close together on a radiating object (e.g., if a pair
of interacting edges come close together). Nevertheless,
the PTD has been often used for predicting the dominant
contribution to the radar cross section (RCS) of complex
targets (e.g., aircraft, missiles, etc.).

The above-mentioned high-frequency techniques based
on the GTD/UTD, ECM, and PTD will be applied to some
illustrative antenna examples in the next section. An et7<t
time convention for the sources and fields will be assumed
and suppressed in the following work. Also, k is assumed to
be the wavenumber in the isotropic homogeneous medium
external to the antenna and its host structure (k = 2w /A; A
= wavelength in the external medium).

II. SUMMARY OF HIGH FREQUENCY TECHNIQUES
WITH SPECIFIC ANTENNA APPLICATIONS

The high-frequency techniques such as the GTD/UTD,
ECM, and PTD, which have been briefly discussed above in
Section I, are reviewed in slightly more detail in this section
and results based on these techniques are illustrated for
dealing with some antenna geometries of interest. The main
focus will be on GTD/UTD-based applications; these will
be discussed first. The applications based on the ECM and
the PTD will be illustrated next only from the perspective
of patching up GTD/UTD in those few special situations
where the latter fails as discussed previously, such as in
regions of ray caustics, and where there is a confluence of
caustic and GO shadow boundary transition regions.

A. GTD and Its Uniform Version, UTD

As discussed in Section I, the GTD/UTD is a ray tech-
nique. Therefore, it would be worthwhile to firstly develop
a general expression for the ray optical field. While there
are several procedures, involving either the relevant asymp-
totic approximations of radiation integrals pertaining to
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certain canonical radiation problems, or the asymptotic
(Luneberg—Kline) series expansion of the wave equation,
to arrive at a ray optical field expression, the simpler
and less rigorous approach based on geometrical consid-
erations is employed here. In particular, since energy in
the high-frequency EM field is assumed to be transported
along rays, it follows from geometrical considerations that
power must be conserved in each narrow tube of rays
(or a ray pencil) in a lossless medium. Thus consider
any given (central or axial) ray OP in a ray tube as
shown in Fig. 7. Let the principal wavefront radii of
curvature at O be p; and po, respectively; the corresponding
principal wavefront radii of curvature of that ray at P
are (p; + s) and (p2 + ), where |OP| = s. Let the
electric field intensity at O and P be E(O) and E(P),
respectively; thus, the power crossing the area dA, is given
by (1/Z,)|E(O)12dA, where dA, =~ [(prdy)(padips)]
and where Z, is the plane wave impedance in the medium;
likewise, the power crossing d4, is (1/Z,)|E(P)2dA,
where dA, = |[(p1 + s)di1]{(p2 + s)di2]{. Conservation
of power in the ray tube requires (1/Z,)|E(P)|?dA, =

(1/Z,)|E(0)|2dA,; ie.,
\/—T
(p1+ s)(p2 +3)

Incorporating the local plane wave polarization and phase
heuristically into (1a) yields the rule for continuation of the
field £(O) at O to the field E(P) at P along the ray OP as

|E(P)| = |E(O)] . (1)

ol ~TF P1pP2 —jks

E(P) ~ E(O) -__——(01 T5) (2 7 3) € . (1b)
The field in (1b), which is referred to as an arbitrary ray
optical field (where p; and p are arbitrary), can be shown
to reduce to a plane wave (if [p1, p2] — o0), cylindrical or
conical wave (if p; or po — 00), and a spherical wave (if
p1 = pp = finite value), respectively. Thus the latter more
familiar wave types are all special cases of a ray optical
field whose general form is (1b). One notes that the ray
congruences at 1-2 and 3—4 form a ray caustic (or centers of
radii of curvature p; and po, respectively of the wavefront)
in Fig. 7. The p; and po are positive if the ray caustics
at 1-2 and 3—4 occur before reaching the reference point
O along the ray direction § in Fig. 7; otherwise, they are
negative. The positive branch of the square root is chosen in
(1b); hence, if py o < 0and s > —|p2| or s > —|p1|, then a
caustic is crossed at 1-2 or 34, respectively, and (p2 + 5)
or (p1 + s) changes sign so that a phase jump of /2 due
to caustic traversal needs to be included in (1b), because

P | P
pit+ 8 pi+ 8

if p; = —|p;| and s > —|p;|, fori =1,2.

63W/2,

Furthermore, the magnetic field H(P) at P is found from
E(P) in (1b) via the local plane wave condition along a
ray; namely,

H(P)=Y,5x E(P) )
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Fig. 7. Ray tube (ray pencil).

where Y, = 1/Z,, and Z, as before is the local plane wave
impedance of the medium in which the ray propagates.

The quantity Z(P) in (1b) may represent a field which
is associated with either an incident ray, or with rays that
are reflected or transmitted at an interface between two
media, or with diffracted rays. The initial ray amplitudes
at the points of reflection and transmission can be found
by enforcing the EM boundary conditions at the interface;
these conditions also lead to Snell’s laws of reflection and
transmission which are consistent with Fermat’s principle
and which could in fact have been derived from it. The
initial value of the diffracted ray field is given in terms of
the diffraction coefficient and the diffracted ray path obeys
the extended Fermat’s principle. Thus in general, (1b) can
be written as

B (P) ~E(Op) | 5 - P ik (3
N FZrs At
withp — 4,7 or d (3b)

where the superscript or subseript, p, refers to the incident
(%), reflected (r) or diffracted (d) ray fields.

1) Incident GO Ray Field: Letting p = 7 in (3a) and (3b)
allows one to write the GO incident ray field as

. . 2 ‘2

E'(P)=E'(0;) ;i_:;—;—pf?e * U ()
where U; is unity in the region where the GO incident ray
field exists and is zero otherwise. The incident principal
wavefront radii of curvature p? and p} are measured from
the reference point O; along the incident ray to P. It
is noted that s* = |O;P|. In the two-dimensional case
ps — oo and (4a) becomes

E'(P) = E (00)] -—e=*'U; . (4b)
pl + 8

2) Reflected GO Ray Field: An expression for the re-
flected ray field can be obtained by letting p = 7 in (3a)
and (3b), and by letting the point O, = O, move to the
point of reflection @ g, then (32) and (3b) become

—=r - Pl Py ks
FE (P)~E —_ . —=—e " U,.. (5a
(P) (Qr) Tt p;+sre (53)

where the step function U, is unity in the region where the
reflected ray field exists and is zero otherwise. The reflected
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field ET(Q r) at the point of reflection Qg can be related
to the incident field E'(Qr) at Qg by the dyadic surface
reflection coefficient R as follows:

E'(Qr)=E (Qr)-R. (5b)

Incorporating (5b) into (5a) yields the required expression
for the reflected field at P due to the field incident on the
surface at the point of reflection Qg as

ol ol 5 P1 P3 e iks
E(P)~FE ‘R ——=—e 7" U, (5¢
(P)~F(@r) By o e (50)

The reflected wavefront radii of curvature pf , are shown
in Fig. 8 and they may be calculated via the expressions
given in [2]. The dyadic reflection coefficient R may be
found by approximating the original surface locally by
a plane tangent to that surface at the point of reflection
Qpr when it is illuminated by an EM plane wave, and
by enforcing the EM boundary conditions at Qg. It is
convenient to express the incident and reflected fields in
terms of the unit vectors fixed in the incident and reflected
rays as in Fig. 8. Let &} and &} be unit vectors fixed in the
plane of incidence containing the unit normal vector 7 to the
surface at Qg and the incident ray direction §* at Q g, and
let these vectors also be perpendicular to the incident and
reflected ray directions & and ", respectively. Likewise, let
€1 be a unit vector perpendicular to the plane of incidence
at Q. In these ray fixed unit vectors, R becomes

R=ééRy+é.é.R,. (6)

For a perfectly conducting surface, R; = —1 and R, = 1.
If the reflecting boundary and illumination becomes two-
dimensional, then p5 — oo and (5a) becomes

F(P) ~ Q) Ty Ao

(two-dimensional case) @)

3) Edge Diffracted Ray Field: Consider an edge dif-
fracted ray field produced by an incident wave which strikes
a wedge at Qg as in Fig. 9. One can obtain the general
expression for the edge diffracted ray field once again from
(3a) and (3b) by letting p = d so that

EYP) ~E"(04) o Ph ik (8a)
YN o +sd R '

It is useful to move the reference point Oy along the edge
diffracted ray at P to the point Q g at the point of diffraction
on the edge; thus p‘f — 0 as can be seen from Fig. 9. Even
though p? — 0 in (8a) one can show that:

i [F“wd) o‘f}:F"(QE)ﬁ. (8)
O’ZI——'_’QE

where E'(Qg) is the field of the ray incident at Qg and
D. is the dyadic edge diffraction coefficient. Incorporating
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Fig. 8. Reflected wavefront curvatures and unit vectors associated
with the reflection problem.

(8b) into (8a) with p¢ — p? as O4 — Qg gives

—d —i = 1 d —iks?
E'(P)~E'(Qp) - D. s—d'pdisd“’“ . (89)

It is convenient to express the incident ficld E'(Qg) and
the diffracted field Fd(P) in terms of unit vectors fixed in
the incident and diffracted rays as shown in Fig. 9. The
edge tangent ¢ at Q@ and the incident ray direction &’ form
the edge fixed plane of incidence. The unit vectors 3., and
¢ are parallel and perpendicular, respectively, to the edge
fixed plane of incidence. Likewise /3, and ¢ are parallel
and perpendicular, respectively, to the edge fixed plane of
diffraction formed by ¢ and the diffracted ray direction §
Furthermore, 3, = §' x ¢’ and B, = §% x q& Thus E

BBy B)+ 43 B and B = BB, E) + (- E)
so that D, is given by [2]:

D = ‘ﬁé.éoDes(¢, qsl;ﬁo) - qg,é)Deh(qsv QbI; Bo) - (9)

The scalar UTD edge diffraction coefficients D, and D,y
contained in the dyadic UTD edge diffraction coefficient
D. are obtained from a uniform asymptotic solution to
the canonical problem of the diffraction of plane, cylin-
drical, conical and spherical incident waves by a perfectly
conducting wedge [2] and they contain a sum of four
simple terms, each of which is a product of a cotangent
function (involving ¢, ¢’, and f3,) and a transition function
F containing a Fresnel integral, where

F(z) = 2j/ze’® / dr e 37 (10)
NG

The argument of the F' functions depend on the incident,
reflected and diffracted wavefront curvatures, and they are
defined in [2]; the F function, which is well tabulated, is
responsible for keeping the E bounded at the GO shadow
boundaries where GTD predicts a singularity. Outside the
GO shadow boundary transition regions, the F' function
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Fig. 9. Wedge diffraction geometry.

becomes unity and the UTD result then reduces automat-
ically to GTD. In the two-dimensional case, p¢ — oo in
(8¢) so that E°(P) = E'(Qg)-Der/(1/s%)e~7*" for two-
dimensional edge configurations. Some examples which can
be analyzed using these UTD edge diffraction concepts are
indicated below.

Consider the symmetric parabolic reflector antenna with
a feed whose phase center is at the focus of the parabola as
shown in Fig. 10. The UTD electric field at Py; in the near
zone of this reflector as shown in Fig. 10 is then given by

E(Po) ~E (Pu) + E{(Por) + E5(Por) (1)

where the field E' directly radiated by the feed to Py; has
the form

e—jksi

E' (Por) ~ cf(8,9) U; (12)

P
with
1, in region where the feed is directly visible,
U, = { 0, behind the reflector (within 7SB; and 1S5B>)
where the feed is shadowed.

The quantity ¢ in (12) is a known complex constant, and
F(6,¢) is the vector radiation pattern of the feed with §
measured with respect to the z axis while ¢ is the azimuthal
angle about this axis of symmetry of the paraboloidal
reflector antenna; the quantity f is also assumed to be
known. The field in (12) constitutes a spherical wave from
the feed. The fields -E_Lli and ES are diffracted from two
distinct points on the edge of the reflector, where the plane
containing FPp; and the reflector axis intersects the edge
at (J; and Q)2 in accordance with the extended Fermat’s
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REFLECTOR DIAMETER=D

Fig. 10. Rays contributing to the near field of a symmetric
parabolic reflector antenna. :

principle; these will be described in (16). Next, the field
E(P,3) at Py2 also in the near zone behind the reflector is:

E(Po) ~Ey(Po) + E5(Pe) - (13)
Likewise, the field —E(ng) at Py3 in the near zone becomes
E(Pos) ~ E'(Pos) + B (Pos) + E (Poa) + By (Poa) (14)

in which E is the field at Py that is reflected from Qr
as in Fig. 10; it is given via (5c) by

5 ok % P1PY —jks”
E (Pyps)~ F Ry ——————7 U,
(Fo) ~ B Q) By G n) G+ o0)
as)

with,

and bounded by RSB; and RSB,

1, within the region containing the z-axis
w={
0, otherwise.

Also, E'(Qr) ~ cf(8,,0,)(e77%% /s,) in (15) where
(85, 8,) are the values of (¢, ¢) along the direction 5, =
(OQRr)/(|OQRr|). Finally, the two edge diffracted ray fields
F‘; and F, in (11), (13), and (14) have the general form:
oE'
an’

3

Bi(P,) ~|E(Q;)- Do(@)) +

Q;
=i 9E"
-4 (Q5) + e

J

i@ﬁ
Qj
pY

S A—— (16)
S0 + %))

with j = 1,2 corresponding to @Q; and Q. While the

term involving F(Q g) * D, in (16) has been introduced

in the discussion on the UTD for edge diffraction leading
=T

to (8c), the term containing d, in (16) is an additional

contribution to the UTD edge diffracted field, and it is
termed as the slope diffraction contribution [3], [4]. The
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slope diffraction contribution becomes important if the in-
cident field £ and/or the reflected field E" exhibits a rapid
spatial variation near the point of diffraction Qg on the
edge. For example, if the field E' vanishes at the point of
diffraction Q g, then the field diffracted from Qg calculated
via E'(Qg) - D. would also vanish; however, if E'(Qg)
tends to vanish rapidly at Qg so that its spatial derivative
symbolized here by E /On' may be significant, then it
could give rise to the slope edge diffraction contribution
which must therefore be included for accuracy. In the
present application, if the feed pattern f(6, ) is rapidly
varying at the edges Q1 2 then the slope diffraction term
in (20) will be important; otherwise, the slope effects are
generally negligible. The results in (11)-(16) have been
employed in [21] to obtain the near field radiation from
a parabolic reflector antenna in the plane Z = z, + f
in Fig. 11. However, the results in (11) and (13) can
also be used in the far zone of the reflector outside the
paraxial region. The numerical results in Fig. 11 based
on the UTD as obtained in [21] are compared with those
based on GO (= ' + E' ~ E' in the forward direction
since [E*| < [E"| for the feed employed in this example),
and with the commonly used but far less efficient aperture
integration (AI) technique. It is noted that the GO reflected
field E' is discontinuous in Fig. 11 as required by U, in
(15). Also, the agreement between UTD and the reference
solution based on Al is quite good in that figure. Finally,
it is noted that, for a small range of angles near the plane
of the reflector, one of the edges is always shadowed by
the reflector geometry, and this shadow zone is filled by
surface rays which are excited on the back (convex) side
of the reflector surface via edge diffraction, and these rays
then shed energy tangentially as surface diffracted rays. A
whispering gallery type field can also be excited on the
concave front side of the reflector via edge diffraction.
Such edge excited surface diffracted rays [22]-[25], and
the diffraction of whispering gallery fields [26] occur in a
small angular region and may generally be neglected to first
order without incurring serious errors.

4) UTD Corner (Vertex) Diffracted Field: Corners or ver-
tices can occur if an edge is truncated, e.g., as in the case of
a plane angular sector, or a finite plate structure for which
the edge tangent is discontinuous (to form the corner), or
as in the case of a pyramidal structure with planar facets
whose edges converge to a point; these specific examples
are illustrated in Figs. 12(a) and (b). In addition, corners
or tips can also occur in a smooth conical geometry, as
shown in Fig. 12(c). When a corner in an impenetrable
surface is illuminated by a source, then the incident ray
is diffracted in all radial directions from the corner as
shown in Fig. 12. The UTD field of these corner diffracted
rays illustrated in Fig. 12(a) and (b) keeps the total high-
frequency field bounded and continuous across the corner
induced shadow boundaries of rays diffracted by the edges,
just as the UTD edge diffracted fields keep the total high-
frequency field bounded and continuous across the edge
induced shadow boundaries of the GO incident and reflected
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Fig. 11. Near field radiation patterns of a parabolic reflector
antenna (from [21]).

rays. The corner induced shadow boundaries of the edge
diffracted rays of course occur because such rays cease
to exist whenever the edges terminate (at the corner). The
general UTD form of the corner diffracted field is given by

e—jksg
d
SC

HY(P) = 1,58 x EX(P). (18)

E.(P) ~E(Qc)-De an

Recently, an approximate but useful UTD result for D, has
been obtained for the case of the diffraction by a corner
in a perfectly conducting plane angular sector as shown
in Fig. 12(a). The UTD transition function present in D.,
which compensates for the corner induced discontinuity in
the edge diffracted fields may be viewed as an integral of a
Fresnel integral that can be calculated quite efficiently. The
present more rigorously obtained UTD corner diffraction
coefficient in [27], [28] constitutes an improvement over
a previous one which was constructed heuristically [29].
Figure 13 indicates the far zone radiation pattern of a dipole
antenna located near a perfectly conducting rectangular
plate, which has been calculated via the new D, in [27],
[28]; this pattern is seen to compare very well with an
independent moment method (MM) solution of an integral
equation for the problem.
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Fig. 12. Examples of corner diffracted rays.
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Fig. 13. Radiation pattern of a dipole near a perfectly conducting
rectangular plate. ( UTD ; - - - MM ; — — — UTD without
corner diffraction term). Note: ¢* = 47.5°.

For the case in Fig. 12(c), there.are no edge diffracted
rays because the cone geometry is smooth (except at the tip)
and contains no edges; however, there are surface diffracted
rays that are launched from the smooth portion of the
conical surface. The nature of the surface diffracted rays
changes rapidly as the surface rays on the cone approach
the cone tip because of the rapid decrease in the surface
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radius of curvature (except along the cone generator) as
the tip is approached. The UTD cone tip diffracted field
must then contain information on this change in the nature
of the surface ray field near the tip; such a general UTD
solution has not yet been developed although some initial
attempts have been made [30]. On the other hand, an
approximate UTD-type diffraction coefficient based on the
PO approximation has been developed for the problem of
EM plane wave diffraction by a fully illuminated semi-
infinitc perfectly conducting cone [31], as illustrated in
Fig. 14(a); thus, the incident angle § measured from the
axial direction must remain less than the half cone angle
6. (see Fig. 14(a)). This planec wave diffraction solution
also provides the tip diffracted ray field which propagates
along the generator of the cone to any point () on the
surface. Let an electric current point source p;0(F —7p) at a
distant point P produce this locally plane wave set of fields
(—EZ, H,) which are incident at Q¢ and Q. For convenience,
Py is directed perpendicular to the ray (or local plane wave)
incident at an angle 8; i.e., p; = 8 or p; = ¢, where 0 is
shown in Fig. 14(a). Also, let p, produce the total field
(E,, H;) at @, where in the UTD sense,

EQ=FE@+E@+E(@ (9
AQ=T,@Q+T@+T@ @0

with (Ef,ﬁf) representing the cone tip diffracted fields
as given in [31]. The (E¢(Q), H:(Q)) at Q also directly
provides, via the reciprocity theorem, a knowledge of the
fields (E(P); H(P)) radiated to the far-zone point P by a
point current source p6(T —7q) at @ as in Fig. 14(b); thus,
7 E:(Q), if p = j where j is the
strength of an electric
current point source at @
~rn- Hy(Q), if p = s where h is the
strength of a magnetic
current point source at Q.
21)

Generally, the contribution from the cone tip diffraction
to the far field radiation by antennas on cones becomes
negligible outside the paraxial region; this point will be
clarified later when dealing with radiation from antennas
on a smooth convex surface.

5) UID Ray Fields Associated with the Diffraction by
Smooth Convex Surfaces: UTD solutions for the prob-
lems of diffraction by smooth, perfectly conducting convex
surfaces are useful, for example, for predicting the EM
scattering from aircraft fuselage shapes or ship masts when
they are illuminated by airborne or shipboard antennas,
respectively, and also for predicting the EM radiation and
mutual coupling associated with antennas placed confor-
mally on smooth convex portions of an aircraft, missile or
spacecraft, etc. Three separate cases are considered below.

a) Source and observation points off the smooth convex
surface: The UTD solution for the case when the source
(antenna) and observation points are both off the convex
surface is obtained from a uniform asymptotic solution to
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Fig. 14. Cone tip diffraction within the paraxial region (8 < 6.).

the problem of EM scattering by a circular conducting
cylinder [32], and it is given separately for the lit and
the shadow regions. The field at Pz in the lit region is
associated with the incident and reflected ray paths as
shown in Fig. 15(b) and it is given by

E(P) ~E (PLYU+E"(PL)U (22)

where E is the GO incident field and E”" is the gencralized
reflected field which contains surface diffraction effects (in
addition to the GO reflected field E' U). The latter effects
become significant only within the transition region near the
SSB shown in Fig. 3. The step function U in (22) serves
as an SSB indicator:

U= 1, in the lit region which lies above the SSB
10, in the shadow region which lies below the SSB
(23)
The extent of the transition region around the SSB is of
order 1/(m(Q1)), where

m(e) = [’“igzﬁ} v (24)

and p,(e) is the radius of curvature at any point (e) along
the surface ray. The field E°" is expressed as [32], [33]:

P1 P2 e—jksr (25)

(P ~E R
(P ~F(Qr)- Ry

with

R = Roé1éL +Ruéié] . (26)
The unit vectors contained in (26), and the quantities p7 o
and s” are the same as those given previously in (5¢).
The UTD functions R and R in (26) are defined in

[32], [33] and they contain two transition functions, namely
the F function introduced in (10) as well as the Pekeris
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function P, 4(&) which is well tabulated [34], in which
& = —2m(QRr) cos 8. Here 6 represents the incident angle
defined in Fig. 8, and m(Qgr) contains py(Qr) which is
the surface radius of curvature in the plane of incidence at
Qr. It is noted that P; ; contains an integral of the Airy
functions [32], namely:

e=Im/t 1 V(1)

> _ —36T
Py(6) = vl R T e °7dr (272)

5 eI R V() s
Py == | W (27b)

where

2iV (1) = Wi(r) — Wa(7) (28a)

_ L * rt—1°/3
Wi(r) = Nl [e ]dt. (28b)

Next, the field at Ps in the shadow region is given by [32],
(33]

E(Ps) ~ E'(Ps)[1 - U] (29)

where

-t = d resd
E'(Ps) ~ B(@Q) T(@1, @)y iy aye " G0

with one of the diffracted ray wavefront surface radii of
curvatures, p%, shown in Fig. 15; likewise, the diffracted
ray distance s¢ from Q5 to Ps is also shown in that figure.
The dyadic transfer coefficient T is given as [32], [33}:

T(Qy,Qs) = [13182& +ﬁ1ﬁ2’Dh]. szgg:;e—jkt 31)

in which dn(e) is the width of the surface ray tube (or strip)
at any point (e) along the surface ray path, and ¢ equals
the arc length of the surface ray path from @, to Q2. It
is noted that the surface rays constitute geodesic paths on
the convex surface. It is seen from (31) that T is expressed
compactly in terms of orthogonal unit vectors (£, 71, b) fixed
in the surface ray with £ being a unit tangent to the surface
ray and 7 is a unit normal to the surface along the surface
ray, while b is the binormal vector (5 =fx 7). Again, D
and Dj, both contain F as in (10) as well as P, ,(£). The
quantity ¢ is sometimes referred to as the shadow Fock
parameter given by

),
= [, o™ G2

The parameters ¢!, £, X' and X¢ present in (26) and (31),
which are defined elsewhere in detail [32], [33], ensure
that the total UTD field is continuous across the SSB; i.e.,
E(Pr) in (22) and E(Ps) in (29) are equal at the SSB.

It is noted that in the lit zone outside the SSB transition
region, Y — E which is the usual GO reflected field (i.e.
R — R as in (5)). Likewise, in the shadow zone outside the
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Fig. 15. Ray paths for scattering by a smooth convex surface.

SSB transition region, D, , — T 5, where T 3 is defined
as

N N Q2
Top = ZDf; (Q1)~exp(—/
n=1

Q1

af;h(t’)dt’> Df;h(Qz)]
(33)

in which D3"(Q) is the Keller’s (or GTD type) diffraction
coefficient for the nth surface ray mode which indicates
how the surface modes are launched at @; by the incident
ray which grazes the surface [35]; by reciprocity, D" at
Q- indicates how the surface ray modes detach from the
surface into the external medium. Similarly, af;" indicates
the rate of attenuation of the surface ray modes [35] due
to the continual tangential shedding of energy along the
surface ray. Thus the UTD result automatically recovers
the GTD result outside the SSB transition layer.

b) Radiation by sources on a smooth convex surface:
Consider the radiation by a slot or a short thin wire
antenna on a smooth, perfectly conducting surface. A
UTD analysis of the radiation from these antennas can
be constructed in terms of a uniformly asymptotic high-
frequency approximation to the dyadic Green’s function,
E,m, which provides the radiation from a point electric (%)
or magnetic (m) current source P&(F — T¢) at Q' on the
convex boundary.

p=11 for an electric point current source at Q’
7 for a magnetic point current source at Q'

PATHAK: TECHNIQUES FOR ANTENNA ANALYSIS

The electric field E(P) radiated by p at @’ can then be
expressed as

(35)

if p =
ifp=m

— :, AT
E(P) = Ez(P[Q )/ pl
r m(P 'Q ) *Ds
in which ﬁ-'m is obtained from uniform asymptotic solu-
tions to problems of radiation by p on conducting cylinders
and spheres [36].

(—jk/4m) (‘;ﬁA + 8B + BbC + f;ﬁD) (e=3%9) /),

for P =Py,

= (—jk/4r) (f)’ﬁTlH + TS + HBTLS + f’ﬁT4H>

~

e~ I% /(o [N @)) 0o Q)] g (@)]"/°
P (s7(p% ¥ 59)) exp(—jks?),
for P = PS (36)
and

(=jkZ,4r) (ﬁ’ﬁM + ﬁ’BN) (e79%2 /),
for P = P,
= ) (~jkZ,/4m) (ﬁ’ﬁTg,H )

5 (o [d( Q@) (ps(Q)/ 5 (@]

Vol [(s4(p? + s9))exp(—jks),

for P = Ps.

(37

The field point P = Py, in the lit region (where the source at
@’ is directly visible), and P = Ps in the shadow region.
Although the fields in (36) and (37) are given separately
for P = Py and P = Pg, respectively, they join smoothly
at the shadow boundary SSB which is defined by a plane
tangent to the surface at (. The quantities p? and s are
shown in Fig. 15; also, dn(Q) is the width of the surface ray
strip at Q. The dn was defined earlier in (31); furthermore,
dv, and dip are the angles subtended by the surface ray
strip at )’ and at ), respectively (e.g., d% is shown in Fig.
15) [36]. The unit vectors (&, 7/) at Q' and (£,7,b) at
Q are fixed in the surface ray from @’ to @ as in Fig. 16,
and they have the same meaning as in Fig. 15. Similarly,
the unit vectors (f},7,b,) are fixed in the ray from Q'
to Pp such that £, 7, ¢ and 7/ all lie in the plane of
incidence (defined by 5§ = (Q'Pr)/(|Q"Pz|) and #') and
f-§ =0 = b5 as shown in Fig. 16. The usual angle
of incidence § = cos~1(#’ - §) defines the radiation angle
measured from the 7 direction.

The quantities A, B, C, D, M and N in (36) and
(37) for P = Pp, and the quantities T} through Tg in
those equations for P = Pg are all defined in [36]; they
contain the special UTD transition functions g(e) and G(e)
corresponding to the well tabulated radiation Fock functions
[34], [36] that are expressed in terms of an integral of Airy
functions.

1 jor .
0O == [ dre BTW(n) T (38a)
. 1 [ _isr _
i) == | | are W) (380)
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Fig. 16. Unit vectors fixed in rays to P;, and Ps from a source
on a convex surface.

The argument 6 of the Fock functions is given by & =
~m(Q’) cosf for P = PL, while it is given by the shadow
Fock parameter £ = fQ, (t')/pg(t'))dt’ when P = Pg
as defined previously in (32). ‘

Outside the SSB transition region, where £ < 0 and
& > 0 the UTD results in (36) and (37) automatically
reduce to the GTD form; namely, A — 2, B — 2cos#f,
M — 2sin6 and (C,D,N) — 0 in (36) and (37) for
P = Pr, and §; < 0, and similarly, the results for P = Pg
and for £ > 0 reduce to terms involving

Z LM Q exp( /Q 6;2 a;»h(t’)dt'> DEMQ).

In the latter sum, the L3"(Q’) (which is proportional to
D*(Q")) is the launching coefficient at Q' of the nth
surface ray mode, and D*(Q) is the nth surface ray mode
diffraction coefficient introduced earlier in (33). Within the
SSB transition region, the GTD launching and diffraction
mechanisms are no longer distinct; indeed, such a coupling
between the launching and diffraction effects within the
transition region is naturally contained in the UTD results
of (36) and (37) due to the presence of g(8) and §(6) in
those equations.

The geodesic surface ray path from Q' to Q may be
torsional. A torsional path, is one for which b £V ie.,
a torsional path is a nonplanar curve. It is noted that the
geodesic surface ray paths are helices on convex cylinders,
and they are great circles on spheres; they can be found
easily for developable surfaces, but they must be found
numerically for more general surfaces such as spheroids,
etc. [36]. Furthermore, for closed surfaces, rays that creep
around or encircle such surfaces can also diffract (shed)
tangentially into the lit region. Generally, for electrically
large closed surfaces the contribution from such encircling
rays is weak because of the continuous tangential shedding
of energy along such rays.

The result in (35) can be readily generalized to deal with
the radiation from a slot antenna on a convex surface [36];
thus, the field radiated by a slot antenna becomes (via a
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direct generalization of (21) with p = m):
= [ [ TutPl@)- Bs@)]ds’ (9

where Ms(Q') = E.(Q') x #' is the equivalent magnetic
current in terms of the transmitting electric field E,(Q’) in
the slot aperture of area S,; this M s replaces the aperture
S, which is now short circuited. Likewise, the radiation
from a short thin monopole of height ~ and transmitting
current J(I') fed at the base Q' on a convex surface can
be found as [36]:

_ L, (P|IQ)- A'f i
E(P)~ -cos(kl’ cos 6)dl’,

(PIQ) - fy Iy,

if P=P, (40)
if P=Ps.

=i

Figure 17(a) indicates the far zone radiation pattern of
a short, thin monopole antenna on a spheroid, which is
calculated in the SSB plane (i.e. in the plane tangent to
the spheroid at the base of the monopole) via UTD, and is
shown to compare very well with measurements. Besides
the constant |Ey| pattern which is the only component that
would exist in the SSB plane for a monopole on a sphere,
or on a finite or infinite flat ground plane, there is an
additional (cross-polarized) |E | component of the pattern
that is present for the spheroid because it has two different
principal surface curvatures K; and Ko; ie., E¢ in the
SSB plane of the spheroid results from the “launching”
of torsional surface rays by the monopole since torsion
is proportional to |K; — K»|. The present UTD solution
thus predicts the complex, surface dependent field and
polarization effects in the SSB transition region through the
explicit presence of torsion factors and the radiation Fock
functions in (36) and (37). It is noted that, even though
Fock functions are utilized here, Fock’s original work did
not contain effects of torsional surface rays. The far zone
UTD radiation pattern of a radial slot on a semi-infinite
cone is seen to compare very well with an exact modal
(eigenfunction) solution in Fig. 17(b). The effect of the tip
is ignored in Fig. 17(b); however, as pointed out earlier, this
effect is generally negligible outside the paraxial region.

t) Mutual coupling between antennas on a convex surface:
The UTD expressions for the EM fields (E(Q), H(Q))
at @ on a convex surface that are produced by a slot
antenna, or a short and thin monopole antenna on the
same surface, respectively, are given in detail in [37]; those
analytical expressions have been obtained from the high-
frequency solutions to the same canonical problems as for
the radiation problem in part (b) above, and are presented
only symbolically in (41) and (42), shown on the next
page.Expressions alternative to those in [34] for the slot
case are presented in [38].

The UTD expressions for fee,eh»h&hh which occur in
(41) and (42) contain special transition functions U(¢) and
V(€) [37], [38]; these transition functions are expressed in
terms of an integral containing a ratio of Airy functions, and
they keep the above solutions valid in their SSB transition
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Expressions for the mutual coupling between a pair of
antennas on a convex surface can be found using (43)
and (44) as described in [37], [38]. Figure 18 indicates the
mutual coupling between a pair of slot antennas on a cone
calculated via UTD [37]; it is seen to compare very well

“20[]  cmme— MEASURED
ssux UTD
oeeeee HUGMES

-% with an exact eigenfunction solution. The pattern in Fig. 18
-e0 results from the interference between the dominant surface
150 120 90 60 30 O 30 60 90 120 150 rays and the tip diffracted ray. The tip diffracted ray field

¢ (DEGREES) is calculated as described in [38].
| Eg | radiation pattern of a radial slot in a cone The UTD edge and convex surface diffraction solutions

discussed above are employed to predict the radiation
patterns of a TACAN monopole antenna mounted behind

Fig. 17. Radiation patterns of antennas on perfectly conducting the canopy on the top side of an F-16 aircraft fuselage; the
spheroids and cones (cone half angle = 10°).

E(Q) ie(Q]Q’) N L. for a monopole
{ F(Q)} - { ﬁ,e(QIQ’) } o /o Ky, antenna as in (40) “n
and
EQ) . @I . N oo Al g for a slot antenna
{ H(Q) } \/\/Sa { Thh(QlQl) } [FG(Q ) X n ]ds I as in (39) (42)
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Fig. 19. Radiation pattern of monopole antenna on an F-16 fighter
aircraft (see [39]).

results are shown in Fig. 19 [39]. The UTD model of the
F-16 is built up from connecting spheroidal and flat plate
surfaces. The excellent comparison of these UTD results
with measurements is also shown in that figure.

An application of the UTD solution for radiation and
mutual coupling associated with antennas on a convex
surface is shown in Fig. 20 for predicting the radiation from
a 9 x 9 element dominant mode rectangular waveguide-fed
axial slot antenna phased array in a perfectly conducting
cylinder; this array exhibits a cosine tapered distribution
along both the axial and circumferential directions. The
cosine taper is realized incorporating the effects of mutual
coupling. Figure 20 shows the radiation pattern of this array
when it is phased to radiate in the § = 45°, ¢ = 45°
direction {40].

6) Uniform Analysis of Reflection within Caustic Re-
gions: Figure 6 illustrates a concave—convex surface of
revolution which contains an inflection point along its
generator; such a surface can occur in the design of shaped
subreflectors in dual reflector antenna systems. The feed,
which is a source of a spherical wave, illuminates the
subreflector which is assumed to be in the far zone of the
feed. The rays refiected from the subreflector form a smooth
caustic surface of revolution. It is usually of interest to find
the fields scattered by the subreflector which then illuminate
the main reflector.

One can employ GO to find the rays reflected from the
subreflector as shown in Fig. 6. On the lit side of the caustic
there are two real GO reflected rays that contribute to the
field at Pr. However, conventional GO fails to predict a
field at Ps on the shadow side of the caustic where no real
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Fig. 20. Radiation from a 9 x 9 axial slot phased ar-
ray on a perfectly conducting conducting circular cylinder.
a = 5A;al = 0.114X;a2 = 0.095\. Slot length = 0.686A;
slot width = 0.305A.

reflected rays exist, and it also fails at the caustic where
it predicts a field singularity. Therefore, conventional GO
must be patched up by a uniform GO solution which not
only provides a bounded and smooth variation of the field
across the caustic, but which also automatically recovers the
real ray fields of GO on the lit region outside the caustic
transition layer, and which likewise recovers the “complex”
ray field [41] outside the transition layer on the shadow
side of the caustic (since “real” ray fields cannot exist
there). Such a uniform GO solution for the scattered fields
(E°,H’) is described in [14]; it is summarized below:

E°(Pp) ~ 2mje 7k [Flk_l/E‘Az'(ka/SQ)
+iEGQETHAY (R Q)| (49)
where At is an Airy function [13]-[15] given by
oo
Ai(6) = i/ dt exp(—j(t*/3 + 81))
27 J_ oo

and A¢’ is its derivative. Furthermore,

P,

Q
1/4 - 5

_ ¢ [RA(Qa)-R(Qa)

2 ¥Vr st

. prl‘a pga e—jw/él.

Pla + 55\ Poa + 55

L A@) (@) \/ Py \/ o eﬂ-m}
s

Pl T sp\ P + 54
(46a)
in which
1. . )
b= 5[(sh +55) + (52 + 52)] (46b)
3 3 ) 3 r
& = l(sh + sp) + (sa + 50)] (46c)
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and

i — exp(—jksap) [ field incident at

E(Qap) = A(Q“’b)T (me from the feed)

o (46d)

It is noted that R in (46a) is the dyadic reflection

coefficient as in (5). While (45) is given for the lit side,
a similar expression exists for the shadow side, namely,

E'(P,) ~ 2mje 70 [Ek’l/3Ai(+k2/3Cs)
£GP AN )] @

In (46d), the (), and ) correspond to the two “real” points
of reflection on the surface as in Fig. 6; the parameters
in (46b) and (46c) are defined in terms of @, and Q.
The parameters in (47), for the shadow side, are defined in
terms of “complex” points of reflection Q. and Qp.; these
complex points are determined by an analytical continuation
of the original surface into complex coordinate space [14],
[41]. In practice, the subreflector in Fig. 6 is bounded by an
edge which then truncates the caustic surface in question.
The results in (45) and (47) are valid for observation points
near the smooth portion of the caustic away from the
caustic truncation and away from the second (or the other)
caustic surface which also exists. Outside the given caustic
transition region, (45) automatically recovers the GO result.

7) Multiple Ray Interactions: A diffracted ray which is
incident on a discontinuity undergoes a second diffraction to
create a doubly diffracted ray. Likewise, doubly diffracted
rays can produce triply and higher order multiply diffracted
rays. The effect of multiply diffracted rays is generally
quite weak and may be ignored in that case. However,
one can easily assess the importance of the latter, because
leaving these out generally creates a discontinuity in the
field (much like GO exhibits discontinuities along GO ray
shadow boundaries); if this discontinuity is significant then
it is clear that the multiple interactions must be included
to some order until the discontinuity becomes sufficiently
small. Finally, rays reflected and then diffracted (or vice
versa) are of the same order as singly diffracted rays; thus
they must be generally included to keep all significant
interactions to the same order of asymptotic approximation
(in terms of inverse powers of k) [3]. Multiple interactions
within ray transition regions need to be treated with care
[63].

B. ECM

An expression for the GTD/UTD edge diffracted field has
been presented in (8c) above, namely,

TYP) ~ E(Qu) - Doy | <ot
BB St s

This expression reveals that the edge diffracted field has a
singularity at the edge where s = 0; such a singularity
results from the fact that the edge is a caustic of the
edge diffraction rays, and this caustic at Qg is evident
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from the edge diffracted ray tube illustrated in Fig. 9. The
GTD/UTD expression for the asymptotic high-frequency
ray field is valid away from the edge (i.e., it is valid
outside the so-called edge boundary layer), and the proper
behavior near the edge must be obtained from separate
considerations. On the other hand, if p¢ < O then the
other diffracted ray caustic can occur in the external space
surrounding the wedge whenever the observation point at
P is such that s% = |p?¢|, and the expression for EY(P) of
(8¢) thus becomes singular and consequently fails at and
near this caustic; such a caustic can generally occur along
the diffracted ray if the edge is curved or if the incident
wavefront is concave. For smooth caustics of diffracted
rays one could use the expressions in (45) and (47) directly
within the diffracted ray caustic region except that the
reflected ray parameters present in (45) and (47) must now
be replaced by the corresponding diffracted ray parameters.
However, the use of the ECM in this case will yield the
same result as in (45) and (47) if the integrals present in
the ECM, which are defined later on, are evaluated using
a uniform asymptotic procedure. Furthermore, the ECM is
very useful for treating a point caustic of diffracted rays (as
in Fig. 5 for a symmetric parabolic reflector with the feed
at the focus); the uniform approximation of (45) and (47) is
not valid in regions at and near the intersection or proximity
of the two smooth caustic surfaces, nor where these two
caustic surfaces degenerate to form a single point caustic.

The basic idea behind ECM may be understood as
follows. If ks? > 1 but s¢ < |p?|, then in the near zone
of the edge but sufficiently far from Q g, the expression for

E*(P) in (8c) becomes:

. — — e_jksd with
£ (P)NE(QE)‘De—\/—T- s < o7
8 ks > 1

(48)
Clearly the field at P in (48) may be viewed as being
produced by an appropriate equivalent line source tangent
to the curved edge at Qg, because a line source field also
exhibits an symptotic behavior of the type e~k (s?)~1/2
as in (48) when ks? 3> 1, to describe a cylindrical wave
as illustrated in Fig. 5(b). Thus one can find the strengths
of equivalent electric (I) and magnetic (M) line currents
locally tangent to the edge Si.e., along é) at Qg, which
generate the desired fields (E (P), —I-Td(P)). For a perfectly
conducting edge, the equivalent line currents I and M are
given by [16]

(e} )e
{ E%QE)DN } (49)
(QE)Den

in which D, ., have been indicated previously in (9)
and are evaluated in (49) for a diffracted ray which lies
on the Keller cone and in the caustic direction. Only if

the phase of E (Qg) in (48) is uniform then does (48)
describe a “locally” cylindrical wave emanating from the
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edge as in Fig. 5(b). On the other hand, if the incident rays
strike the edge obliquely (so 3, # 7/2) then the phase
of E'(Qg) is not uniform, and neither does the phase of
I and M remain constant but instead contains a traveling
wave factor automatically through the presence of El(Q E)
in (49). In the latter case the diffracted field behavior in
(48), and likewise the corresponding asymptotic line source
field behavior, e7%** (s4)~1/2, now describes a more general
conical rather than a cylindrical wave. In the ECM, these
conical waves thus locally simulate the Keller cones of
edge diffracted rays. Even though (8c) becomes singular
at diffracted ray caustics, the currents in (49) are defined
and well behaved at every point along the curved edge, and
hence they can be incorporated within the radiation inte(?ral
to yield a bounded result for the total diffracted field F,
at and near the caustic. Thus

—d ikZ
Etotal(P) ~ 7r0

]f[Rx RxIé+Y,Rx Mé]
o—JiKR

dl (50)

where R is the vector from QE to P, and the integration
is around the edge contour which produces the caustic of
diffracted rays.

It is noted that an edge diffracted ray exhibits the local
line source field variation of the type eks* (s4)=1/2 in (48)
only when D, is not range dependent; i.e., only when
one observes the edge diffracted field outside the edge
boundary layer and external to the incident and reflection
boundary (ISB and RSB) transition regions where the
UTD reduces to GTD. This is true because the special
range dependent Fresnel type UTD transition function F'
in D., which is different from unity within the ISB and
RSB transition regions, modifies the e/*** (s¢)~1/2 type
cylindrical or conical wave behavior within these transition
layers. Consequently, the GTD-based ECM remains valid
only if the edge diffracted ray caustic transition layer does
not overlap with the ISB and RSB transition layers.

The ECM is an outgrowth of some early work in [42]
which was later formulated in terms of the GTD in [16]
to yield (49). A heuristic modification to extend the use
of Des e in (49), which are defined only on the Keller
cone, so that they can be approximately generalized to be
defined along radiation directions lying outside the Keller
cone is provided in [17] by splitting the (sin 3,)~! factor
in (49) as well as the one present in the Deg,ep of (49),
symmetrically into /sin 3, sin 3,, where 3, is the angle
between the incident ray and é at Qg, and 3, is the angle
between the observation direction and é at Qg. If 8, = £,
only then does the direction of radiation from I or M at Qg
coincide with the diffracted ray from Qg that lies on the
Keller cone. Such a generalization involving a symmetric
split is useful in that away from the caustic transition layer,
where the GTD is valid, it allows the integral in (50) to
reduce asymptotically (i.e., for large radius of curvature of
the edge) to the expected GTD description [4,17] in terms of
a superposition of isolated edge diffracted ray contributions
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Ejzl E?(P), where each term F(;(P) is of the type in
(8c). The effect of truncating the limits of integration to the
portion of the edge which is directly illuminated may create
spurious contributions; this aspect and possible remedies are
discussed in [4]. It is noted that unlike true currents, the 1
and M in (49), together with the modification of sin g,
to y/sin 3! sin 3/, depend on the radiation or observation
direction.

The GTD-based ECM discussed above provides the dif-
fracted field contribution without having to find the dif-
fracted ray paths as in the GTD. However, the ECM
requires an integration, which only in some special cases
can be evaluated in closed form, and which in general must
be evaluated numerically. This ECM can be used to find the
fields diffracted within the rear axial caustic region of the
symmetric parabolic reflector of Fig. 5(a) as shown in Fig.
11. An analogous ECM application is to calculate the fields
in the rear axial caustic direction of a coaxial waveguide
fed aperture in a finite circular ground plane [43]. An ECM
analysis of the radiation by an axial monopole on a circular
ground plane, and on a flat-backed cone may be found in
[9], and [44], respectively.

The GTD-based ECM can also be employed to describe
the fields diffracted by an offset fed parabolic reflector
for those observation directions in which isolated points
of edge diffraction which move on the elliptic rim can
coalesce and thereby create a singularity in the conventional
GTD calculation. In this case, the ECM integral could
asymptotically be expressed in terms of a parabolic cylinder
function, thus providing an analytical result if desired.

In addition, the ECM can be employed in special cases
to evaluate the fields at caustics of reflected rays, and of
surface diffracted rays. Furthermore, it can be extended
to treat the scattering by a class of interior waveguide
discontinuities. The equivalent currents for interior wave-
guide regions are defined via the concept of modal ray
fields which are found either exactly or asymptotically from
the interior waveguide modes [45], [46]. The equivalent
currents / and M, which “replace” the interior structure,
and asymptotically produce the same interior modal fields
as those created by the discontinuity via not only I and M,
but also their images due to the effect of the waveguide
walls, have been developed in [46] to find the modal
reflection coefficients and the radiation by an incident
modal field associated with an open-ended semi-infinite
parallel plate waveguide antenna geometry. Other related
work may be found in {47]-[49]. An alternative approach in
which only equivalent magnetic currents M are impressed
at the discontinuity and which radiate the desired fields
within interior (or exterior) regions in the “presence” of the
interior waveguide geometry have been developed in [50],
[51]; such an ECM-based approach, which does not require
one to explicitly find the images of the equivalent sources
and their fields, can treat a somewhat more general class
of waveguide discontinuities. Examples of the use of the
latter ECM for interior regions are illustrated for finding
the modal reflection coefficients of a waveguide fed horn
antenna in [50], and for an open-ended circular waveguide
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Fig. 21. Application of ECM to find the modal reflection coeffi-
cient of open-ended circular waveguide and horn antennas. (Exact
Wiener—Hopf solution in: Weinsten, The Theory of Diffraction and
the Factorization Method, Golem Press, 1968.)

aperture antenna in [51] as presented in Fig. 21. The ECM
based results in Fig. 21 are seen to compare extremely well
with exact Wiener—Hopf calculations.

More recently, the GTD-based ECM for edged bodies
has been formulated in [52] directly from the asymptotic
treatment of the integral representation for the canonical
wedge diffraction problem, from which a set of slightly
improved equivalent currents I and M can be identified. It
may be remarked that the ECM concept is closely related
to the incremental length diffraction coefficient (ILDC)
concept developed by Mitzner [53]; a comparison of ILDC
and ECM is available in [54], [S5].

C. PID

As indicated in Section I, the PTD was developed by
Ufimtsev [19] at about the same time Keller developed
the GTD. The PTD serves to correct PO, while GTD
provides a correction to GO. Thus the PTD field is a
superposition of the PO field and its correction which is
the so-called “edge wave field.” The PO field is produced
by the GO approximation for the currents induced on the
radiating object, whereas the edge wave field is produced
by the diffracted component of the current on the radiat-
ing object. Since GTD/UTD is the sum of the GO and
diffracted ray fields, it is not surprising that if the PTD
radiation integrals (i.e., the PO integral plus the integral
over the diffracted current component) are evaluated using
high-frequency asymptotics then the PTD reduces to the
GTD. Furthermore, when the asymptotics is performed in
a uniform fashion, the PTD can recover the UTD. Clearly,
therefore, the PTD can be employed to patch up GTD/UTD
in regions where GTD/UTD and even the GTD-based
ECM fails. Elsewhere, the GTD/UTD and the GTD-ECM
become applicable and are expected to be far more efficient
than the PTD which generally requires the evaluation of
PO integrals over an electrically large radiating object.
Furthermore, multiple wave interactions can generally be
accounted for in a straightforward fashion using the GTD
ray technique, which is not true for the PTD. Also, the PTD
has been developed only for an edge at the present time;
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consequently, the GO current discontinuity at the geometric
shadow boundary on the smooth portion of a scatterer can
induce a spurious diffraction contribution to the PO integral.
Ways to remove such spurious effects are discussed in
[56]. Nevertheless, the PTD becomes particularly useful
for patching up the GTD/UTD in regions where there
is a confluence of reflected and/or diffracted ray caustic
transition regions with the GO (incident or reflected) ray
shadow boundary transitions regions. It is recalled that
the GTD-ECM-based approach also fails there. The PTD
electric field at an observation point P can be written as

E(P)~FE +Enrp (51a)
—s —5 =S
Eprp =Epo + Ey (51b)

where E' is the classical incident field from the primary
source radiating in the absence of any scattering structure,
and EiT p is the PTD based asymptotic approximation to
the field scattered by the presence of the structure when
excited by the primary source. Unlike the incident GO
field E'U; which is discontinuous (see (4a)), the E'
(51a) is continuous everywhere. The Eprp is calculated
by superposing the physical optics contribution, E po and
the Ufimtsev correction, Eg as in (51b), where

EroP) == [ [ 75°w)
Shit

e~ JkiF— Tl X
'[” )o@

in which 7?0(1*’ ) is the GO approximation to the current
induced at any point 7 on a perfectly conducting boundary
excited by a primary source (the source of E"). The
boundary may be a host structure for an antenna which
serves as a primary source, or, the primary source could be
a feed antenna for a reﬂectmg boundary (e.g., a parabollc
reflector). Thus JS () = &' x [H (7)Y + H (7)U,]
on the part of the boundary surface Sj;, which is directly
illuminated by the primary source, and Jg = 0 elsewhere
(i.¢., in the shadow region) on the boundary. Here, H (7)U;
and H (7)U, are the incident and reflected GO compo-
nents of the magnetic field at 7. The position vector to the
observation point is 7, and @’ is the unit outward normal
vector to the boundary at 7. It appears that Ufimtsev found
Ef indirectly in his original work [19]. If the PTD integrals
in (51), (52) are approximated asymptotically, then

Foo~-EQ-U)+EU, +E(Qr)

—PO pd —jksd
e Sd(pd +Sd)e (53)
and EZ(P) can be expressed as
Eo(P)~E(Q )fv P ikt (54)
v &) Do\ 5050
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=PO
where D, is identified as a PO based edge diffraction co-

efficient, and ﬁeU is a Ufimtsev edge diffraction coefficient.
Actually, there can be several edge diffraction contributions
to (51) and (52); however, only a single such contribution is
indicated in (53) for convenience. It is interesting to observe
that [17], [57]

=PO =U

D, +D, =D, (55)

as one might expect. Equation (55) essentially illustrates
the connection between PTD and GTD/UTD. Following

=PO =U
(9), one can also express ), and D, as
=PO
D, =-B8,BDEC(4,4;5,)
- ¢'8DEC (9,45 5o) (562)
=U
De :_ﬂ/ﬁo (d’ ¢/'ﬂo)
— ¢'6D%(6.¢';8,). (56b)

The 53 essentially describes Ufimtsev’s edge (fringe)
wave diffraction pattern. While Ufimtsev found Ey; via
indirect considerations in [19], one could in retrospect
employ an approximate procedure following the GTD-
based ECM ideas contained in (49) and (50), as well as
in the discussion below (50), to obtain E7;; thus

=S ]k‘
Ey(P) =~

[Rx BRxIVé+Y,Rx MUé]

—jk‘R

dr (57

where the Ufimtsev type equivalent currents IV and MY
in (57) are given by

{ 1Y(Qk) }

MY(QE)
et /Q{Yo}ﬂ
- sinﬁo sin 3/ Zo ¢

{ (QEe)DY,(¢,4';\/sin B, smﬂ’)}
H(QE)D w(¢,¢'; \/sin B, sin 1) '

(58)

Recently, a new formulation of the PTD was presented in
[20] for directly calculating the fringe wave contribution
pertaining to the scalar (acoustic) case. Those ideas in [20]
can be directly extended here to find FZ for the vector EM

case; thus
]]CZO//—d [z V)it
T+ — yoR P ——ds

9
since By v is radiated by the component of the current which
is produced by the edge diffracted field on the surface of
the scatterer; this diffracted component of the current is

denoted by 7 (#) in (59). According to [20],

EU(P

ds' = =2 (60)

62

Fig. 22. Integration coordinates on the wedge.

where the coordinate ¢ is along the Keller cone of diffracted
rays on the surface. The coordinates 7, o and 7 are shown
in Fig. 22; it is noted that ¥ = é = unit edge tangent
vector, and 7} L é. The integral in (59) together with (60)
may be evaluated asymptotically in closed form along the
o coordinate, thereby leaving a line integral along the 7
variable (i.e., along the edge contour as in (57)) that yields
a PTD based ECM interpretation (analogous to (57)) from
which a more refined set of equivalent currents 7Y and MY
than those in (58) can be identified. It is noted that only the
dominant range dependent terms may be retained in (52)
and (59) which result from the V'V operation therein; the
remaining higher order range terms may be neglected as
usual for k|7 — 7| > 1.

The PTD can also be employed to deal with apertures. In
this case, the PO concepts may be extended so that the PO
type contribution can be found from the GO fields in the
aperture; such a PO integral over the aperture is commonly
referred to as the aperture integral (Al) when it is applied
to horn and reflector antennas. An appropriate Ufimtsev

i -5 =5 .
correction E; may then be added to £4; (corresponding
to the Al contribution which acts like the PO contribution).
It is noted that Ep, or Fj ; for aperture problems, is
generally far more significant than the Ufimtsev correction
E(S] in the region corresponding to the main beam, as for
example in the case of horn and reflector antennas.

Figure 23 illustrates the far zone E plane radiation pattern
of a symmetric parabolic reflector fed at the focus, with four
symmetric struts holding the feed; this pattern has been
calculated in [58] using Al up to 6° away from the main
beam axis and switching to UTD beyond 6° (except for the
use of GTD-based ECM to patch up GTD in the rear axial
caustic direction at § = 180°). The Ufimtsev correction to
Al is negligible in Fig. 23 which shows that the Al alone
compares very well with measurements. The diameter of the
conducting struts is 0.84 in and the scattering from these
struts is found by using a wire diffraction coefficient in con-
junction with ECM as described in [58]. Figure 24 shows
the far zone E plane radiation pattern of a pyramidal horn
calculated in [59] using the Al technique to 30° away from
the main beam axis, and the GTD-based ECM beyond 30°.
Measured results are also shown for comparison in Fig. 24
from which it can be again seen that the Ufimtsev correction
to Al is negligible in this case. The Ufimtsev correction to
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Fig. 23 Measured and calculated E plane patterns of a symmetric
parabolic reflector antenna at 11 GHz. (a) Measured. (b) Calculated
(see [58]).
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Fig. 24 Measured and calculated F plane patterns of a pyramidal
horn antenna (see [59)).

Al becomes important if one employs Al not just to calcu-
late the antenna main beam and the first few sidelobes, but
to also calculate the wide angle sidelobes and back lobes.

III. CONCLUSIONS

It is seen that high-frequency techniques are conceptually
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simple as well as versatile in being able to predict the
radiation patterns, mutual coupling and other effects associ-
ated with a large variety of practical antenna configurations.
However, as also seen from Section II, the use of GTD/UTD
technique requires a knowledge of the relevant diffraction
coefficients; therefore, while several diffraction mecha-
nisms can presently be characterized by UTD coefficients,
more UTD coefficients need to be developed to solve a
greater variety of antenna problems which are relevant to
present and future EM technology. Some UTD coefficients
which are known only approximately at present need to be
refined in some cases; others need to be found for additional
perfectly conducting as well as nonconducting (and even
penetrable) canonical structures. Some work in the latter
case which is available in [60], [61] needs to be developed
further; such work would be useful, for example, to predict
the reduction in coupling between antennas on a metal
surface by introducing a lossy (absorbing) material patch
placed between the pair of antennas, or to predict the effects
of the canopy of private aircraft, or helicopters, on the
antennas located on such structures, etc. The PTD likewise
needs to be formally extended to deal with nonconducting
surfaces and to smooth surfaces without edges, etc. Not
discussed in this paper are spectral techniques which can be
used in conjunction with high-frequency approximations to
deal with complex (nonray optical) illumination of the host
structure by the primary source (antenna) [62], [63]. Finally,
hybrid procedures which combine high and low frequency
techniques {66], and the Gaussian beam techniques have
also not been discussed here due to space limitations.
Different aspects of ray and Gaussian beam methods have
appeared previously as a collection of papers in [65]; the
latter also contains a paper by Borovikov and Kinber, which
in turn provides a large bibliography of Soviet papers on
high-frequency techniques. The hybrid procedures as well
as the Gaussian beam techniques appear to hold promise
to solve some high-frequency EM antenna and scattering
problems which may otherwise become intractable.
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